Previous |  Up |  Next

Article

Title: The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry (English)
Author: Demirel, Oğuzhan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 3
Year: 2009
Pages: 359-371
Summary lang: English
.
Category: math
.
Summary: In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry. (English)
Keyword: Möbius transformation
Keyword: hyperbolic geometry
Keyword: gyrogroups
Keyword: gyrovector spaces and hyperbolic trigonometry
MSC: 20N05
MSC: 30F45
MSC: 51B10
MSC: 51M10
idZBL: Zbl 1212.51002
idMR: MR2573410
.
Date available: 2009-09-23T21:34:28Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/134909
.
Reference: [1] Ungar A.A.: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession.Fundamental Theories of Physics, 117, Kluwer Academic Publishers Group, Dordrecht, 2001. Zbl 0972.83002, MR 1978122
Reference: [2] Ungar A.A.: Analytic Hyperbolic Geometry,: Mathematical Foundations and Applications.World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Zbl 1089.51003, MR 2169236
Reference: [3] Ungar A.A.: From Pythagoras to Einstein: The hyperbolic Pythagorean theorem.Found. Phys. 28 (1998), no. 8, 1283--1321. MR 1653451, 10.1023/A:1018874826277
Reference: [4] Ungar A.A.: The hyperbolic square and Möbius transformations.Banach J. Math. Anal. 1 (2007), no. 1, 101--116. Zbl 1129.30027, MR 2350199
Reference: [5] Ungar A.A.: Hyperbolic trigonometry and its application in the Poincaré ball model of hyperbolic geometry.Comput. Math. Appl. 41 (2001), 135--147. Zbl 0988.51017, MR 1808511, 10.1016/S0898-1221(01)85012-4
Reference: [6] Ungar A.A.: Einstein's velocity addition law and its hyperbolic geometry.Comput. Math. App. 53 (2007), 1228--1250. Zbl 1132.83301, MR 2327676, 10.1016/j.camwa.2006.05.028
Reference: [7] G.S. Birman and Ungar A.A.: The Hyperbolic Derivative in the Poincaré ball model of Hyperbolic Geometry.Journal of. Math. Anal. and Appl. 254, 2001, 321--333. MR 1807904, 10.1006/jmaa.2000.7280
Reference: [8] Ungar A.A.: Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity.World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Zbl 1147.83004, MR 2169236
Reference: [9] Ungar A.A.: From Möbius to gyrogroups.Amer. Math. Monthly 115 (2008), no. 2, 138--144. Zbl 1152.30045, MR 2384266
Reference: [10] Bhumkar K.: Interactive visualization of Hyperbolic geometry using the Weierstrass model.A Thesis submitted to the Faculty of the Graduate School of University of Minnesota, 2006.
Reference: [11] Demirel O., Soytürk E.: The hyperbolic Carnot theorem in the Poincaré disc model of hyperbolic geometry.Novi Sad J. Math. 38 (2008), no. 2, 33--39. MR 2526025
Reference: [12] : { http://zimmer.csufresno.edu/\symbol{126}larryc/proofs/proofs.contradict.html}..
Reference: [13] : { http://www.cut-the-knot.org/pythagoras/index.shtml}..
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-3_4.pdf 241.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo