Previous |  Up |  Next

Article

Title: Intrinsic dimensionality and small sample properties of classifiers (English)
Author: Raudys, Šarūnas
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 4
Year: 1998
Pages: [461]-466
Summary lang: English
.
Category: math
.
Summary: Small learning-set properties of the Euclidean distance, the Parzen window, the minimum empirical error and the nonlinear single layer perceptron classifiers depend on an “intrinsic dimensionality” of the data, however the Fisher linear discriminant function is sensitive to all dimensions. There is no unique definition of the “intrinsic dimensionality”. The dimensionality of the subspace where the data points are situated is not a sufficient definition of the “intrinsic dimensionality”. An exact definition depends both, on a true distribution of the pattern classes, and on the type of the classifier used. (English)
Keyword: intrinsic dimensionality
Keyword: nonlinear classifiers
MSC: 62H30
MSC: 68T05
idZBL: Zbl 1274.68346
idMR: MR1658933
.
Date available: 2009-09-24T19:19:13Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135232
.
Reference: [1] Duin R. P. W.: Superlearning capabilities of neural networks.In: Proc. of the 8th Scandinavian Conference on Image Analysis NOVIM, Norwegian Society for Image Processing and Pattern Recognition, Tromso 1993, pp. 547–554
Reference: [3] Raudys Š.: Linear classifiers in perceptron design.In: Proceedings 13th ICPR, Vol. 4, Track D, Vienna 1996, IEEE Computer Society Press, Los Alamitos, pp. 763–767
Reference: [4] Raudys Š.: On dimensionality, sample size and classification error of nonparametric linear classification algorithms.IEEE Trans. Pattern Analysis Machine Intelligence PAMI-19 (1989), 6, 669–671
Reference: [5] Raudys Š., Jain A. K.: Small sample size effects in statistical pattern recognition: Recommendations for practitioners.IEEE Trans. Pattern Analysis Machine Intelligence PAMI-13 (1991), 252–264 10.1109/34.75512
.

Files

Files Size Format View
Kybernetika_34-1998-4_18.pdf 1.085Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo