Previous |  Up |  Next

Article

Title: Piecewise linear classifiers preserving high local recognition rates (English)
Author: Tenmoto, Hiroshi
Author: Kudo, Mineichi
Author: Shimbo, Masaru
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 4
Year: 1998
Pages: [479]-484
Summary lang: English
.
Category: math
.
Summary: We propose a new method to construct piecewise linear classifiers. This method constructs hyperplanes of a piecewise linear classifier so as to keep the correct recognition rate over a threshold for a training set. The threshold is determined automatically by the MDL (Minimum Description Length) criterion so as to avoid overfitting of the classifier to the training set. The proposed method showed better results in some experiments than a previous method. (English)
Keyword: piecewise linear classifiers
Keyword: clustering
Keyword: recognition rates
MSC: 68T10
MSC: 68U99
idZBL: Zbl 1274.68395
.
Date available: 2009-09-24T19:19:35Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135235
.
Reference: [2] Forgy E. W.: Cluster analysis of multivariate data: Efficiency versus interpretability of classifications.Abstracts Biometrics 21 (1965), 3, 768
Reference: [3] al S. Hayamizu et: Generation of VCV/CVC balanced word sets for speech database.Bull. Electrotechnical Laboratory 49 (1985), 10, 803–834
Reference: [4] Mangasarian O. L.: Multisurface method of pattern separation.IEEE Trans. Inform. Theory 14 (1968), 6, 801–807 Zbl 0169.51108, 10.1109/TIT.1968.1054229
Reference: [5] Meisel W. S.: Computer–Oriented Approaches to Pattern Recognition.Academic Press, New York 1972 Zbl 0252.68063
Reference: [6] Nilsson N. J.: Learning Machines.McGraw–Hill, New York 1965 Zbl 0760.68060
Reference: [7] Park Y., Sklansky J.: Automated design of multiple–class piecewise linear classifiers.J. Classification 6 (1989), 195–222 Zbl 0698.62061, 10.1007/BF01908599
Reference: [8] Rissanen J.: A universal prior for integers and estimation by minimum description length.Ann. Statist. 11 (1983), 416–431 Zbl 0513.62005, 10.1214/aos/1176346150
Reference: [9] Sklansky J., Michelotti L.: Locally trained piecewise linear classifiers.IEEE Trans. Pattern Analysis and Machine Intelligence 2 (1980), 101–111 Zbl 0443.62046, 10.1109/TPAMI.1980.4766988
Reference: [10] Sklansky J., Wassel G. N.: Pattern Classification and Trainable Machines.Springer–Verlag, New York 1981
Reference: [11] Takiyama R.: A learning procedure for multisurface method of pattern separation.Pattern Recognition 12 (1980), 75–82 Zbl 0428.68092, MR 0567072, 10.1016/0031-3203(80)90005-9
Reference: [12] Tomek I.: Two modifications of CNN.IEEE Trans. Systems Man Cybernet. 6 (1976), 11, 769–772 Zbl 0341.68066, MR 0449068, 10.1109/TSMC.1976.4309452
Reference: [13] Yamanishi K.: A learning criterion for stochastic rules.In: Machine Learning, to appear. An extended abstract in Proceedings of the Third Annual Workshop on Computational Learning Theory, 1990, pp. 67–81
.

Files

Files Size Format View
Kybernetika_34-1998-4_21.pdf 932.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo