Previous |  Up |  Next

Article

Title: Neural network realizations of Bayes decision rules for exponentially distributed data (English)
Author: Vajda, Igor
Author: Lonek, Belomír
Author: Nikolov, Viktor
Author: Veselý, Arnošt
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 5
Year: 1998
Pages: [497]-514
Summary lang: English
.
Category: math
.
Summary: For general Bayes decision rules there are considered perceptron approximations based on sufficient statistics inputs. A particular attention is paid to Bayes discrimination and classification. In the case of exponentially distributed data with known model it is shown that a perceptron with one hidden layer is sufficient and the learning is restricted to synaptic weights of the output neuron. If only the dimension of the exponential model is known, then the number of hidden layers will increase by one and also the synaptic weights of neurons from both hidden layers have to be learned. (English)
Keyword: exponentially distributed data
MSC: 62C10
MSC: 62H30
MSC: 62M45
MSC: 68T05
idZBL: Zbl 1274.62645
idMR: MR1663720
.
Date available: 2009-09-24T19:19:58Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135239
.
Reference: [1] Berger J. O.: Statistical Decision Theory and Bayesian Analysis.Second edition. Springer, New York 1985 Zbl 0572.62008, MR 0804611
Reference: [2] Brown L. D.: Fundamentals of Statistical Exponential Families.Lecture Notes 9. Inst. of Mathem. Statist., Hayward, California 1986 Zbl 0685.62002, MR 0882001
Reference: [3] Bock H. H.: A clustering technique for maximizing $\phi $-divergence, noncentrality and discriminating power.In: Analyzing and Modelling Data and Knowledge (M. Schader, ed.), Springer, Berlin 1992, pp. 19–36
Reference: [4] Devijver P., Kittler J.: Pattern Recognition: A Statistical Approach.Prentice Hall, Englewood Cliffs 1982 Zbl 0542.68071, MR 0692767
Reference: [5] Funahashi K.: On the approximate realization of continuous mappings by neural networks.Neural Networks 2 (1989), 183–192 10.1016/0893-6080(89)90003-8
Reference: [6] Hampel F. R., Rousseeuw P. J., Ronchetti E. M., Stahel W. A.: Robust Statistics: The Approach Based on Influence Functions.Wiley, New York 1986 Zbl 0733.62038, MR 0829458
Reference: [7] Hand D. J.: Discrimination and Classification.Wiley, New York 1981 Zbl 0587.62119, MR 0634676
Reference: [8] Hornik K., Stinchcombe M., White H.: Multilayer feedforward networks and universal approximation.Neural Networks 2 (1989), 359–366 10.1016/0893-6080(89)90020-8
Reference: [9] Küchler U., Sørensen M.: Exponential families of stochastic processes: A unifying semimartingale approach.Internat. Statist. Rev. 57 (1989), 123–144 10.2307/1403382
Reference: [10] Lapedes A. S., Farber R. H.: How neural networks work.In: Evolution, Learning and Cognition (Y. S. Lee, ed.), World Scientific, Singapore 1988, pp. 331–340 MR 1036563
Reference: [11] Mood A. M., Graybill F. A., Boes D. C.: Introduction to the Theory of Statistics.Third edition. McGraw–Hill, New York 1974 Zbl 0277.62002
Reference: [12] Müller B., Reinhard J., Strickland M. T.: Neural Networks.Second edition. Springer, Berlin 1995
Reference: [13] Ripley B. D.: Statistical aspects of neural networks.In: Networks and Chaos (O. E. Barndorff–Nielsen, J. L. Jensen and W. S. Kendall, eds.), Chapman and Hall, London 1993. pp. 40–123 Zbl 0825.68531, MR 1314652
Reference: [14] Vajda I.: About perceptron realizations of Bayesian decisions about random processes.In: IEEE International Conference on Neural Networks, vol. 1, IEEE, 1996, pp. 253–257
.

Files

Files Size Format View
Kybernetika_34-1998-5_1.pdf 2.619Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo