Previous |  Up |  Next

Article

Title: A spectral characterization of the behavior of discrete time AR–representations over a finite time interval (English)
Author: Antoniou, E. N.
Author: Vardulakis, A. I. G.
Author: Karampetakis, N. P.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 5
Year: 1998
Pages: [555]-564
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the behavior of the discrete time AR (Auto Regressive) representations over a finite time interval, in terms of the finite and infinite spectral structure of the polynomial matrix involved in the AR-equation. A boundary mapping equation and a closed formula for the determination of the solution, in terms of the boundary conditions, are also gived. (English)
Keyword: discrete time auto regressive (AR) model
Keyword: boundary conditions
Keyword: finite and infinite spectral structure of the polynomial matrix
MSC: 62M10
MSC: 65F30
MSC: 93C55
MSC: 93E10
idZBL: Zbl 1274.93174
idMR: MR1663736
.
Date available: 2009-09-24T19:20:29Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135243
.
Reference: [1] Luenberger D. G.: Dynamic equations in descriptor form.IEEE Trans. Automat. Control 22 (1977), 3, 312–321 Zbl 0354.93007, MR 0479482, 10.1109/TAC.1977.1101502
Reference: [2] Luenberger D. G.: Boundary recursion for descriptor variable systems.IEEE Trans. Automat. Control 34 (1989), 3, 287–292 Zbl 0674.93043, MR 0980358, 10.1109/9.16418
Reference: [3] Lewis F. L.: Descriptor systems: Decomposition into forward and backward subsystems.IEEE Trans. Automat. Control 29 (1984), 2, 167–170 Zbl 0534.93013, MR 0736914, 10.1109/TAC.1984.1103467
Reference: [4] Lewis F. L., Mertzios B. G.: On the analysis of discrete linear time–invariant singular systems.IEEE Trans. Automat. Control 35 (1990), 4, 506–511 Zbl 0705.93058, MR 1048009, 10.1109/9.52316
Reference: [5] Lewis F. L.: A survey of linear singular systems.Circuits Systems Signal Process. 5 (1986), 1, 3–36 Zbl 0613.93029, MR 0893725
Reference: [6] Nikoukhah R., Willsky A., Levy B. C.: Boundary–value descriptor systems: well–posedness, reachability and observability.Internat. J. Control 46 (1987), 1715–1737 Zbl 0636.93055, MR 0917179, 10.1080/00207178708934005
Reference: [7] Gantmacher F. R.: Matrix Theory.Chelsea, New York 1971
Reference: [8] Gohberg I., Lancaster P., Rodman L.: Matrix Polynomials.Academic Press, New York 1982 Zbl 1170.15300, MR 0662418
Reference: [9] Gohberg I., Kaashoek M. A., Lerer L., Rodman L.: Common multiples and common divisors of matrix polynomials.I. Spectral method. Indiana J. Math. 30 (1981), 321–356 Zbl 0449.15015, MR 0611224, 10.1512/iumj.1981.30.30027
Reference: [10] Gohberg I., Kaashoek M. A., Lerer L., Rodman L.: Common multiples and common divisors of matrix polynomials.II. Van der Monde and resultant matrices. Linear and Multilinear Algebra 12 (1982), 159–203 Zbl 0496.15014, MR 0678825, 10.1080/03081088208817483
Reference: [11] Vardulakis A. I. G.: Linear Multivariable Control – Algebraic Analysis and Synthesis Methods.Wiley, New York 1991 Zbl 0751.93002, MR 1104222
Reference: [12] Willems J. C.: Paradigms and puzzles in the theory of dynamical systems.IEEE Trans. Automat. Control 36 (1991), 3, 259–294 Zbl 0737.93004, MR 1092818, 10.1109/9.73561
.

Files

Files Size Format View
Kybernetika_34-1998-5_5.pdf 1.159Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo