Full entry |
PDF
(1.3 MB)
Feedback

reachability; observability; linear system; max-plus algebra

References:

[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: **Synchronization and Linearity: An Algebra for Discrete Event Systems**. Wiley, New York 1992 MR 1204266 | Zbl 0824.93003

[2] Cofer D., Garg V.: **Supervisory control of real–time discrete–event systems using lattice theory**. IEEE Trans. Automat. Control 41 (1996), 199–209 MR 1375752 | Zbl 0846.93005

[3] Cohen G., Moller P., Quadrat J., Viot M.: **Algebraic tools for the performance evaluation of discrete event systems**. Proc. IEEE 77 (1989), 39–58

[4] Cuninghame–Green R. A.: **Minimax Algebra**. Springer Verlag, New York 1979 MR 0580321 | Zbl 0739.90073

[5] Doustmohammadi A., Kamen E.: **Direct generation of event–timing equations for generalized flow shop systems**. In: Proceedings of the SPIE Photonics East 1995 Symposium, Philadelphia 1995, pp. 50–62

[6] Gazarik M.: **Monitoring and Control of Manufacturing Systems Based on the Max–plus Formulation**. Ph.D. Thesis, Georgia Institute of Technology, Atlanta 1997

[7] Gazarik M., Kamen E.: **Reachability and observability of linear systems over max–plus**. In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997 MR 1705526

[8] Kamen E. W.: **An Equation–based approach to the control of discrete event systems with applications to manufacturing**. In: International Conference on Control Theory and Its Applications, Jerusalem 1993

[9] Olsder G., Roos C.: **Cramer and Cayley–Hamilton in the max algebra**. Linear Algebra Appl. 101 (1988), 87–108 MR 0941298 | Zbl 0659.15012

[10] Prou J.-M., Wagneur E.: **Controllability in the Max-algebra**. In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 13–24 MR 1705527