Previous |  Up |  Next

Article

Title: Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case (English)
Author: Outrata, Jiří V.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 2
Year: 1999
Pages: [177]-193
Summary lang: English
.
Category: math
.
Summary: The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem is strongly regular at the solution. (English)
Keyword: mathematical programs
Keyword: optimality condition
Keyword: equilibrium constraints
MSC: 49J52
MSC: 90C30
MSC: 90C46
MSC: 91A65
idZBL: Zbl 1274.90484
idMR: MR1690944
.
Date available: 2009-09-24T19:24:40Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135279
.
Reference: [1] Anandalingam G., (eds.) T. Friesz: Hierarchical optimization.Ann. Oper. Res. 34 (1992) Zbl 0751.90067, MR 1150995
Reference: [2] Aubin J.-P., Frankowska H.: Set–Valued Analysis.Birkhäuser, Boston 1990 Zbl 1168.49014, MR 1048347
Reference: [3] Clarke F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983 Zbl 0696.49002, MR 0709590
Reference: [4] Dempe S.: A necessary and sufficient optimality condition for bilevel programming problems.Optimization 25 (1992), 341–354 MR 1235324, 10.1080/02331939208843831
Reference: [5] Kočvara M., Outrata J. V.: On the solution of optimum design problems with variational inequalities.In: Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific, Singapore 1995, pp. 172–192 Zbl 0952.49034, MR 1460001
Reference: [6] Kočvara M., Outrata J. V.: A nonsmooth approach to optimization problems with equilibrium constraints.In: Proc. of the ICCP (M. Ferris and J.-S. Pang, eds.), SIAM 1997, pp. 148–164 Zbl 0887.90168, MR 1445078
Reference: [7] Luo Z.-Q., Pang J.-S., Ralph D., Wu S.-Q.: Exact penalization and stationary conditions of mathematical programs with equilibrium constraints.Math. Programming 75 (1996), 19–76 MR 1415093
Reference: [8] Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge 1996 Zbl 1139.90003, MR 1419501
Reference: [9] B. S. : Approximation Methods in Problems of Optimization and Control.Nauka, Moscow 1988. (In Russian; English translation to appear in Wiley–Interscience) Zbl 0643.49001, MR 0945143
Reference: [10] B. S. : Sensitivity analysis in nonsmooth optimization.In: Theoretical Aspects of Industrial Design (D. A. Field, and V. Komkov, eds.), SIAM Publications, Philadelphia 1992, pp. 32–46 Zbl 0769.90075, MR 1157413
Reference: [11] B. S. : Generalized differential calculus for nonsmooth and set–valued mappings.J. Math. Anal. Appl. 183 (1994), 250–288 Zbl 0807.49016, MR 1273445, 10.1006/jmaa.1994.1144
Reference: [12] B. S. : Lipschitzian stability of constraint systems and generalized equations.Nonlinear Analysis, Theory, Methods & Applications 22 (1994), 173–206 Zbl 0805.93044, MR 1258955, 10.1016/0362-546X(94)90033-7
Reference: [13] Murty K. G.: Linear Programming.Wiley, New York 1983 Zbl 0691.90051, MR 0720547
Reference: [14] Murty K. G.: Linear Complementarity, Linear and Nonlinear Programming.Heldermann, Berlin 1988 Zbl 0634.90037, MR 0949214
Reference: [15] Outrata J. V.: On optimization problems with variational inequality constraints.SIAM J. Optimization 4 (1994), 340–357 Zbl 0826.90114, MR 1273763, 10.1137/0804019
Reference: [16] Outrata J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints, to appea.
Reference: [17] Pang J.-S., Ralph D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps.Math. Oper. Res. 21 (1996), 401–426 Zbl 0857.90122, MR 1397221, 10.1287/moor.21.2.401
Reference: [18] Robinson S. M.: Strongly regular generalized equations.Math. Oper. Res. 5 (1980), 43–62 Zbl 0437.90094, MR 0561153, 10.1287/moor.5.1.43
Reference: [19] Scholtes S.: Introduction to Piecewise Differentiable Equations.Habil. Thesis, University of Karlsruhe, 1994
Reference: [20] Treiman J. S.: General optimality conditions for bi-level optimization problems.Preprint
Reference: [21] Ye J. J., Zhu D. L.: Optimality conditions for bilevel programming problems.Optimization 33 (1995), 9–27 Zbl 0820.65032, MR 1333152, 10.1080/02331939508844060
Reference: [22] Ye J. J., Zhu D. L., Zhu Q. J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems.SIAM J. Optimization 7 (1997), 481–507 Zbl 0873.49018, MR 1443630, 10.1137/S1052623493257344
Reference: [23] Ye J. J., Ye X. Y.: Necessary optimality conditions for optimization problems with variational inequality constraints.Math. Oper. Res. 22 (1997), 977–997 Zbl 1088.90042, MR 1484692, 10.1287/moor.22.4.977
Reference: [24] Zhang R.: Problems of hierarchical optimization in finite dimensions.SIAM J. Optimization 4 (1994), 521–536 Zbl 0819.90107, MR 1287814, 10.1137/0804029
.

Files

Files Size Format View
Kybernetika_35-1999-2_3.pdf 1.835Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo