Previous |  Up |  Next

Article

Title: Robust stability of non linear time varying systems (English)
Author: Zeheb, Ezra
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 4
Year: 1999
Pages: [415]-428
Summary lang: English
.
Category: math
.
Summary: Systems with time-varying non-linearity confined to a given sector (Luré type) and a linear part with uncertainty formulated by an interval transfer function, are considered. Sufficient conditions satisfying the Popov criterion for stability, which are computationally tractable, are derived. The problem of checking the Popov criterion for an infinite set of systems, is reduced to that of checking the Popov criterion for a finite number of fixed coefficient systems, each in a prescribed frequency interval. Illustrative numerical examples are provided. (English)
Keyword: Popov criterion
Keyword: stability
Keyword: time-varying nonlinearity
Keyword: Lur’e type nonlinearity
Keyword: interval transfer function
MSC: 93C10
MSC: 93D09
MSC: 93D10
idZBL: Zbl 1274.93224
idMR: MR1723522
.
Date available: 2009-09-24T19:26:54Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135298
.
Reference: [1] Brockett R. W., Lee H. B.: Frequency–domain instability criteria for time–varying and nonlinear systems.Proc. IEEE 55 (1967), 604–618
Reference: [2] Fruchter G., Srebro U., Zeheb E.: An analytic method for design of uncertain discrete nonlinear control systems.In: Proc. of the 15th Conference of IEEE in Israel, Tel-Aviv 1987
Reference: [3] Fruchter G.: Generalized zero sets location and absolute robust stabilization of continuous nonlinear control systems.Automatica 27 (1991), 501–512 Zbl 0754.93027, MR 1104510, 10.1016/0005-1098(91)90107-D
Reference: [4] Fruchter G., Srebro U., Zeheb E.: Stability of discrete nonlinear control systems.IMA J. Math. Control Inform. 14 (1997), 333–351 Zbl 0896.93027, MR 1492837, 10.1093/imamci/14.4.333
Reference: [5] Kerbelev A. M.: A circle criterion for robust stability and instability of nonstationary nonlinear systems.Automat. Remote Control 54 (1993), 12, 1820–1823 Zbl 0825.93595, MR 1261540
Reference: [6] Kharitonov V. L.: Asymptotic stability of an equilibrium of a family of system of linear differential equations.Differential Equations 14 (1979), 1483–1485
Reference: [7] Levkovich A., Zeheb E., Cohen N.: Frequency response envelopes of a family of uncertain continuous–time systems.IEEE Trans. Circuits and Systems 42 (1995), 156–165 Zbl 0820.93044, MR 1332412, 10.1109/81.376874
Reference: [8] Popov V. M.: Absolute stability of nonlinear systems of automatic control.Translated from Automatika i Telemekhanika 22 (1961), 961–979 Zbl 0107.29601, MR 0133563
Reference: [9] Rozenvasser E. N.: The absolute stability of non–linear systems.Translated from Automatika i Telemekhanika 24 (1963), 304–313 MR 0160996
Reference: [10] Siljak D.: Parameter analysis of absolute stability.Automatica 5 (1969), 385–387 Zbl 0179.41203, 10.1016/0005-1098(69)90079-X
Reference: [11] Siljak D.: Polytopes of nonnegative polynomials.In: Proc. of the American Control Conf. (ACC), Pittsburgh 1989, pp. 193-199
Reference: [12] Zeheb E.: Robust stability of non–linear time varying systems.In: Proc. of the 5th IEEE Mediterranean Conf. on Control and Systems, Paphos 1997
.

Files

Files Size Format View
Kybernetika_35-1999-4_2.pdf 1.486Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo