| Title:
             | 
Robust observer design for time-delay systems: a Riccati equation approach (English) | 
| Author:
             | 
Fattouh, Anas | 
| Author:
             | 
Sename, Olivier | 
| Author:
             | 
Dion, Jean-Michel | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 | 
| Volume:
             | 
35 | 
| Issue:
             | 
6 | 
| Year:
             | 
1999 | 
| Pages:
             | 
753-764 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper, a method for $H_\infty $ observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method. (English) | 
| Keyword:
             | 
linear system | 
| Keyword:
             | 
time delay | 
| Keyword:
             | 
Riccati equation | 
| Keyword:
             | 
robust observer design | 
| MSC:
             | 
93B07 | 
| MSC:
             | 
93B36 | 
| MSC:
             | 
93B51 | 
| idZBL:
             | 
Zbl 1274.93079 | 
| idMR:
             | 
MR1747974 | 
| . | 
| Date available:
             | 
2009-09-24T19:29:49Z | 
| Last updated:
             | 
2015-03-27 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/135323 | 
| . | 
| Reference:
             | 
[1] Boyd S., Ghaoui L. EL, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory.SIAM Stud. Appl. Math. 1994 Zbl 0816.93004, MR 1284712 | 
| Reference:
             | 
[2] Choi H. H., Chung M. J.: Observer–based $H_{\infty }$ controller design for state delayed linear systems.Automatica 32 (1996), 1073–1075 MR 1405466, 10.1016/0005-1098(96)00014-3 | 
| Reference:
             | 
[3] Choi H. H., Chung M. J.: An LMI approach to $H_{\infty }$ controller design for linear time–delay systems.Automatica 33 (1997), 737–739 MR 1448971, 10.1016/S0005-1098(96)00242-7 | 
| Reference:
             | 
[4] Fattouh A., Sename O., Dion J.-M.: $H_{\infty }$ Observer design for time–delay systems.In: Proc. of the 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545–4546 | 
| Reference:
             | 
[5] Fattouh A., Sename O., Dion J.-M.: $\alpha $–decay rate observer design for linear systems with delayed state.In: Proc. of the 8th European Control Conference, Karlsruhe 1999 | 
| Reference:
             | 
[6] Furukawa T., Shimemura E.: Stabilizability conditions by memoryless feedback for linear systems with time-delay.Internat. J. Control. 37 (1983), 553–565 Zbl 0503.93050, MR 0703298, 10.1080/00207178308932992 | 
| Reference:
             | 
[7] Khargonekar P. P., Petersen I. R., Zhou K.: Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_\infty $ control theory.IEEE Trans. Automat. Control 35 (1990), 356–361 MR 1044036, 10.1109/9.50357 | 
| Reference:
             | 
[8] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equation.Academic Press, New York 1986 MR 0860947 | 
| Reference:
             | 
[9] Lee E. B., Olbrot A.: Observability and related structural results for linear hereditary systems.Internat. J. Control. 34 (1981), 1061–1078 Zbl 0531.93015, MR 0643872, 10.1080/00207178108922582 | 
| Reference:
             | 
[10] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H^{\infty }$ controllers for state delayed systems.IEEE Trans. Automat. Control 39 (1994), 159–162 MR 1258692, 10.1109/9.273356 | 
| Reference:
             | 
[11] Niculescu S. I., Trofino–Neto A., Dion J.-M., Dugard L.: Delay–dependent stability of linear systems with delayed state: An L.M.I. approach. In: Proc. of the 34th Conference on Decision and Control, New Orleans 1995, pp. 1495–1496 | 
| Reference:
             | 
[12] Pearson A. E., Fiagbedzi Y. A.: An observer for time lag systems.IEEE Trans. Automat. Control 34 (1989), 775–777 Zbl 0687.93011, MR 1000675, 10.1109/9.29412 | 
| Reference:
             | 
[13] Petersen I. R., Anderson B. D. O., Jonckheere E. A.: A first principles solution to the non–singular $H^\infty $ control problem.Internat. J. Robust and Nonlinear Control 1 (1991), 171–185 10.1002/rnc.4590010304 | 
| Reference:
             | 
[14] Ramos J. L., Pearson A. E.: An asymptotic modal observer for linear autonomous time lag systems.IEEE Trans. Automat. Control 40 (1995), 1291–1294 Zbl 0825.93084, MR 1344050, 10.1109/9.400473 | 
| Reference:
             | 
[15] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays.IEEE Trans. Automat. Control 31 (1986), 543–550 Zbl 0596.93009, MR 0839083, 10.1109/TAC.1986.1104336 | 
| Reference:
             | 
[16] Watanabe K., Ouchi T.: An observer of systems with delays in state variables.Internat. J. Control 41 (1985), 217–229 MR 0775229, 10.1080/0020718508961121 | 
| Reference:
             | 
[17] Yao Y. X., Zhang Y. M., Kovacevic R.: Parameterization of observers for time delay systems and its application in observer design.IEE Proc. Control Theory Appl. 143 (1996), 225–232 | 
| Reference:
             | 
[18] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control.Prentice–Hall, Englewood Cliffs, N. J. 1996 Zbl 0999.49500 | 
| . |