Previous |  Up |  Next

Article

Title: Planar anisotropy revisited (English)
Author: Beneš, Viktor
Author: Gokhale, Arun M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 2
Year: 2000
Pages: [149]-164
Summary lang: English
.
Category: math
.
Summary: The paper concerns estimation of anisotropy of planar fibre systems using the relation between the rose of directions and the rose of intersections. The discussion about the properties of the Steiner compact estimator is based on both theoretical and simulation results. The approach based on the distribution of the Prokhorov distance between the estimated and true rose of directions is developed. Finally the curved test systems are investigated in both Fourier and Steiner compact analysis of anisotropy. (English)
Keyword: planar anisotropy
Keyword: planar fibre system
Keyword: Steiner compact analysis
MSC: 52A22
MSC: 60D05
MSC: 60K10
MSC: 62M40
idZBL: Zbl 1249.60185
idMR: MR1760022
.
Date available: 2009-09-24T19:31:48Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135341
.
Reference: [1] Baddeley A.: An anisotropic sampling design.In: Geobild’85 (W. Nagel, ed.). FSU Jena 1985, pp. 92–97
Reference: [2] Digabel H.: Determination practique de la rose des directions.In: 15 fascicules de morphologie mathematique appliquee (6), Fontainebleau 1975
Reference: [3] Heyer H.: Probability Measures on Locally Compact Groups.Springer, Berlin 1977 Zbl 0528.60010, MR 0501241
Reference: [4] Hilliard J. E.: Specification and measurement of microstructural anisotropy.Trans. Metall. Soc. AIME 224 (1962), 1201–1211
Reference: [5] Kanatani K. I.: Stereological determination of structural anisotropy.Internat. J. Engrg. Sci. 22 (1984), 531–546 Zbl 0564.73014, MR 0750003, 10.1016/0020-7225(84)90055-7
Reference: [6] Kufner A., Kadlec J.: Fourier Series.Academia, Praha 1971 Zbl 0215.17901, MR 0393989
Reference: [7] Matheron G.: Random Sets and Integral Geometry.Wiley, New York 1975 Zbl 0321.60009, MR 0385969
Reference: [8] Mecke J.: Formulas for stationary planar fibre processes III-intersections with fibre systems.Math. Oper. Statist., Ser. Statist. 12 (1981), 201–210 Zbl 0472.60016, MR 0618605
Reference: [9] Philofski E. M., Hilliard J. E.: On the measurement of the orientation distribution of lineal and areal arrays.Trans. ASM 27 (1967), 1, 79–86
Reference: [10] Rachev S. T.: Probability Metrics.Wiley, New York 1991 Zbl 1178.91046, MR 1105086
Reference: [11] Rataj J., Saxl I.: Analysis of planar anisotropy by means of the Steiner compact.J. Appl. Probab. 26 (1989), 490–502 Zbl 0694.60010, MR 1010938, 10.2307/3214407
Reference: [12] Rychlik T.: Order statistics of variables with given marginal distributions.In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer and M. D. Taylor, eds.), IMS Lecture Notes – Monograph Series 28 (1996), pp. 297–306 MR 1485539
Reference: [13] Schneider R.: Convex Bodies: The Brunn–Minkowski Theory.Encyclopedia Math. Appl. 44 (1993) Zbl 0798.52001, MR 1216521
Reference: [14] Stoyan S., Kendall W. S., Mecke J.: Stochastic Geometry and Its Applications.Second edition. Wiley, New York, Chichester 1995 Zbl 1155.60001
.

Files

Files Size Format View
Kybernetika_36-2000-2_1.pdf 2.167Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo