[1] Dynkin E. B., Yushkevich A. A.:
Controlled Markov Processes. Springer–Verlag, New York 1979
MR 0554083
[4] Gordienko E., Hernández–Lerma O.:
Average cost Markov control processes with weighted norms: exitence of canonical policies. Appl. Math. 23 (1995), 199–218
MR 1341223
[5] Gordienko E., Hernández–Lerma O.:
Average cost Markov control processes with weighted norms: value iteration. Appl. Math. 23 (1995), 219–237
MR 1341224 |
Zbl 0829.93068
[6] Gordienko E. I., Isauro-Martínez M. E., Carrillo R. M. Marcos: Estimation of stability in controlled storage systems. Research Report No. 04.0405.I.01.001.97, Dep. de Matemáticas, Universidad Autónoma Metropolitana, México 1997
[8] Hernández-Lerma O., Lasserre J. B.:
Average cost optimal policies for Markov control processes with Borel state space and unbounded costs. Systems Control Lett. 15 (1990), 349–356
DOI 10.1016/0167-6911(90)90108-7 |
MR 1078813
[9] Hernández-Lerma O., Lassere J. B.: Discrete–time Markov Control Processes. Springer–Verlag, New York 1995
[10] Hinderer H.:
Foundations of Non–Stationary Dynamic Programming with Discrete Time Parameter. (Lecture Notes in Operations Research 33.) Springer–Verlag, New York 1970
MR 0267890 |
Zbl 0202.18401
[11] Kartashov N. V.:
Inequalities in theorems of ergodicity and stability for Markov chains with common phase space. II. Theory Probab. Appl. 30 (1985), 507–515
DOI 10.1137/1130063
[12] Kumar P. R., Varaiya P.:
Stochastic Systems: Estimation, Identification and Adaptive Control. Prentice–Hall, Englewood Cliffs, N. J. 1986
Zbl 0706.93057
[13] Meyn S. P., Tweedie R. L.:
Markov Chains and Stochastic Stability. Springer–Verlag, Berlin 1993
MR 1287609 |
Zbl 1165.60001
[14] Nummelin E.:
General Irreducible Markov Chains and Non–Negative Operators. Cambridge University Press, Cambridge 1984
MR 0776608 |
Zbl 0551.60066
[15] Rachev S. T.:
Probability Metrics and the Stability of Stochastic Models. Wiley, New York 1991
MR 1105086 |
Zbl 0744.60004
[16] Scott D. J., Tweedie R. L.:
Explicit rates of convergence of stochastically ordered Markov chains. In: Proc. Athens Conference of Applied Probability and Time Series Analysis: Papers in Honour of J. M. Gani and E. J. Hannan (C. C. Heyde, Yu. V. Prohorov, R. Pyke and S. T. Rachev, eds.). Springer–Verlag, New York 1995, pp. 176–191
MR 1466715
[17] Dijk N. M. Van:
Perturbation theory for unbounded Markov reward processes with applications to queueing. Adv. in Appl. Probab. 20 (1988), 99–111
DOI 10.2307/1427272 |
MR 0932536
[18] Dijk N. M. Van, Puterman M. L.:
Perturbation theory for Markov reward processes with applications to queueing systems. Adv. in Appl. Probab. 20 (1988), 79–98
DOI 10.2307/1427271 |
MR 0932535
[21] Zolotarev V. M.:
On stochastic continuity of queueing systems of type $G\vert G\vert 1$. Theory Probab. Appl. 21 (1976), 250–269
MR 0420920