Previous |  Up |  Next

Article

Title: Gaussian semiparametric estimation in seasonal/cyclical long memory time series (English)
Author: Arteche, Josu
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 3
Year: 2000
Pages: [279]-310
Summary lang: English
.
Category: math
.
Summary: Gaussian semiparametric or local Whittle estimation of the memory parameter in standard long memory processes was proposed by Robinson [18]. This technique shows several advantages over the popular log- periodogram regression introduced by Geweke and Porter–Hudak [7]. In particular under milder assumptions than those needed in the log periodogram regression it is asymptotically more efficient. We analyse the asymptotic behaviour of the Gaussian semiparametric estimate of the memory parameter in seasonal or cyclical long memory processes allowing for asymmetric spectral divergences or zeros. Consistency and asymptotic normality are obtained. (English)
MSC: 62G05
MSC: 62G08
MSC: 62G20
MSC: 62M10
idZBL: Zbl 1248.62142
idMR: MR1773505
.
Date available: 2009-09-24T19:32:56Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135351
.
Reference: [1] Arteche J.: Log–periodogram regression in seasonal/cyclical long memory time series.Working Paper, Biltoki 98.17, University of the Basque Country, 1998
Reference: [2] Arteche J., Robinson P. M.: Seasonal and cyclical long memory.In: Asymptotics, Nonparametrics and Time Series (S. Ghosh, ed.), Marcel Dekker Inc., New York 1999, pp. 115–148 Zbl 1069.62539, MR 1724697
Reference: [3] Brillinger D. R.: Time Series: Data Analysis and Theory.Holden–Day, San Francisco 1975 Zbl 0983.62056, MR 0443257
Reference: [4] Carlin J. B., Dempster A. P.: Sensitivity analysis of seasonal adjustments: empirical case studies.J. Amer. Statist. Assoc. 84 (1989), 6–20 MR 0999663, 10.1080/01621459.1989.10478729
Reference: [5] Dahlhaus R.: Efficient parameter estimation for self-similar processes.Ann. Statist. 17 (1989), 1749–1766 Zbl 0703.62091, MR 1026311, 10.1214/aos/1176347393
Reference: [6] Fox R., Taqqu M. S.: Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series.Ann. Statist. 14 (1986), 517–532 Zbl 0606.62096, MR 0840512, 10.1214/aos/1176349936
Reference: [7] Geweke J., Porter–Hudak S.: The estimation and application of long–memory time series models.J. Time Ser. Anal. 4 (1983), 221–238 Zbl 0534.62062, MR 0738585, 10.1111/j.1467-9892.1983.tb00371.x
Reference: [8] Giraitis L., Surgailis D.: A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle’s estimate.Probab. Theory Related Fields 86 (1990), 87–104 MR 1061950, 10.1007/BF01207515
Reference: [9] Gray H. L., Zhang N. F., Woorward W. A.: On generalized fractional processes.J. Time Ser. Anal. 10 (1989), 233–257 MR 1028940, 10.1111/j.1467-9892.1989.tb00026.x
Reference: [10] Hall P., Heyde C. C.: Martingale Limit Theory and its Application in Probability and Mathematical Statistics.Academic Press, New York 1980 MR 0624435
Reference: [11] Hassler U.: (Mis)specification of long-memory in seasonal time series.J. Time Ser. Anal. 15 (1994), 19–30 Zbl 0794.62059, MR 1256854, 10.1111/j.1467-9892.1994.tb00174.x
Reference: [12] Heyde C. C., Gay R.: Smoothed periodogram asymptotics and estimation for processes and fields with possible long–range dependence.Stoch. Process. Appl. 45 (1993), 169–182 Zbl 0771.60021, MR 1204868, 10.1016/0304-4149(93)90067-E
Reference: [13] Heyde C. C., Seneta E.: Estimation theory for growth and immigration rates in multiplicative process.J. Appl. Probab. 9 (1972), 235–256 MR 0343385, 10.2307/3212796
Reference: [14] Jonas A. J.: Persistent Memory Random Processes.Ph.D. Thesis. Department of Statistics, Harvard University, 1983
Reference: [15] Kunsch H. R.: Statistical aspects of self-similar processes.In: Proc. First World Congress Bernoulli Soc. (Yu. Prohorov and V. V. Sazanov, eds.), VNU Science Press, Utrecht, 1 (1987), 67–74
Reference: [16] Robinson P. M.: Efficient tests of non-stationary hypothesis.J. Amer. Statist. Assoc. 89 (1994), 1420–1437 MR 1310232, 10.1080/01621459.1994.10476881
Reference: [17] Robinson P. M.: Log–periodogram regression of time series with long-range dependence.Ann. Statist. 23 (1995), 3, 1048–1072 Zbl 0838.62085, MR 1345214, 10.1214/aos/1176324636
Reference: [18] Robinson P. M.: Gaussian semiparametric estimation of long–range dependence.Ann. Statist. 23 (1995), 1630–1661 Zbl 0843.62092, MR 1370301, 10.1214/aos/1176324317
Reference: [19] Whittle P.: Estimation and information in stationary time series.Ark. Mat. 2 (1953), 423–434 Zbl 0053.41003, MR 0060797, 10.1007/BF02590998
Reference: [20] Zygmund A.: Trigonometric Series.Cambridge University Press, Cambridge, UK 1977 Zbl 1084.42003, MR 0617944
.

Files

Files Size Format View
Kybernetika_36-2000-3_2.pdf 5.464Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo