Previous |  Up |  Next

Article

Title: Second order asymptotic distribution of the $R_\phi$-divergence goodness-of-fit statistics (English)
Author: Pardo, María Carmen
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 4
Year: 2000
Pages: [437]-454
Summary lang: English
.
Category: math
.
Summary: The distribution of each member of the family of statistics based on the $R_{\phi }$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term. (English)
MSC: 62B10
MSC: 62E17
MSC: 62E20
MSC: 62G10
idZBL: Zbl 1245.62046
idMR: MR1830648
.
Date available: 2009-09-24T19:34:11Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135362
.
Reference: [1] Ali M. S., Silvey D.: A general class of coefficients of divergence of one distribution from another.J. Roy. Statist. Soc. Ser. B 28 (1966), 131–140 Zbl 0203.19902, MR 0196777
Reference: [2] Bednarski T., Ledwina T.: A note on a biasedness of tests of fit.Mathematische Operationsforschung und Statistik, Series Statistics 9 (1978), 191–193 MR 0512257
Reference: [3] Burbea J.: $J$-divergences and related topics.Encycl. Statist. Sci. 44 (1983), 290–296
Reference: [4] Burbea J., Rao C. R.: On the convexity of some divergence measures based on entropy functions.IEEE Trans. Inform. Theory 28 (1982), 489–495 Zbl 0479.94009, MR 0672884, 10.1109/TIT.1982.1056497
Reference: [5] Burbea J., Rao C. R.: On the convexity of higher order Jensen differences based on entropy function.IEEE Trans. Inform. Theory 28 (1982), 961–963 MR 0687297, 10.1109/TIT.1982.1056573
Reference: [6] Cohen A., Sackrowitz H. B.: Unbiasedness of the chi–square, likelihood ratio, and other goodness of fit tests for the equal cell case.Ann. Statist. 3 (1975), 959–964 Zbl 0311.62021, MR 0381087, 10.1214/aos/1176343197
Reference: [7] Cressie N., Read T. R. C.: Multinomial goodness of fit test.J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 MR 0790631
Reference: [8] Csiszár I.: Eine Informationtheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten.Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108 MR 0164374
Reference: [9] Greenwood P. E., Nikolin M. S.: A Guide to Chi–squared Testing.Wiley, New York 1996 MR 1379800
Reference: [10] Liese F., Vajda I.: Convex Statistical Distances.Teubner, Leipzig 1987 Zbl 0656.62004, MR 0926905
Reference: [11] Mann H. B., Wald A.: On the choice of the number of intervals in the application of the chi–square test.Ann. Math. Statist. 13 (1942), 306–317 MR 0007224, 10.1214/aoms/1177731569
Reference: [12] Pardo M. C.: On Burbea–Rao divergences based goodness–of–fit tests for multinomial models.J. Multivariate Anal. 69 (1999), 65–87 MR 1701407, 10.1006/jmva.1998.1799
Reference: [13] Pardo M. C., Vajda I.: About distances of discrete distributions satisfying the data processing theorem of information theory.Trans. IEEE Inform. Theory 43 (1997), 4, 1288–1293 Zbl 0884.94015, MR 1454961, 10.1109/18.605597
Reference: [14] Pearson K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.Philosophy Magazine 50 (1900), 157–172
Reference: [15] Rao C. R.: Asymptotic efficiency and limiting information.In: Proc. 4th Berkeley Symp. on Math. Statist. Probab. 1, Univ. of California Press, Berkeley 1961, pp. 531–546 Zbl 0156.39802, MR 0133192
Reference: [16] Rao C. R.: Linear Statistical Inference and Its Applications.Second edition. Wiley, New York 1973 Zbl 0256.62002, MR 0346957
Reference: [17] Rao C. R.: Analysis of Diversity: A Unified Approach.Technical Report No. 81-26, University of Pittsburhg 1981 Zbl 0569.62061, MR 0705316
Reference: [18] Read T. R. C.: On Choosing a Goodness–of–fit test.Unpublished Ph.D. Thesis, Flinders University, South Australia 1982 Zbl 0564.62033
Reference: [19] Read T. R. C.: Closer asymptotic approximations for the distributions of the power divergence goodness–of–fit statistics.Ann. Inst. Statist. Math. 36 (1984), Part A, 59–69 Zbl 0554.62015, MR 0752006, 10.1007/BF02481953
Reference: [20] Read T. R. C., Cressie N.: Goodness of Fit Statistics for Discrete Multivariate Data.Springer, New York 1988 Zbl 0663.62065, MR 0955054
Reference: [21] Schorr B.: On the choice of the class intervals in the application of the chi–square test.Math. Operationsforsch. Statist. 5 (1974), 357–377 Zbl 0285.62018, MR 0388650, 10.1080/02331887408801174
Reference: [22] Siotani M., Fujikoshi Y.: Asymptotic approximations for the distributions of multinomial goodness–of–fit statistics.Hiroshima Math. J. 14 (1984), 115–124 Zbl 0553.62017, MR 0750392
Reference: [23] Sturges H. A.: The choice of a class interval.J. Amer. Statist. Assoc. 21 (1926), 65–66 10.1080/01621459.1926.10502161
Reference: [24] Vajda I.: Theory of Statistical Inference and Information.Kluwer Academic Publishers, Dordrecht – Boston 1989 Zbl 0711.62002
Reference: [25] Yarnold J. K.: Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set.Ann. of Math. Statist. 43 (1972), 1566–1580 Zbl 0256.62022, MR 0372967, 10.1214/aoms/1177692389
Reference: [26] Zografos K., Ferentinos K., Papaioannou T.: $\varphi $-divergence statistics: sampling properties and multinomial goodness of fit divergence tests.Comm. Statist. – Theory Methods 19 (1990), 5, 1785–1802 MR 1075502, 10.1080/03610929008830290
.

Files

Files Size Format View
Kybernetika_36-2000-4_4.pdf 2.235Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo