Title:
|
Second order asymptotic distribution of the $R_\phi$-divergence goodness-of-fit statistics (English) |
Author:
|
Pardo, María Carmen |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
36 |
Issue:
|
4 |
Year:
|
2000 |
Pages:
|
[437]-454 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The distribution of each member of the family of statistics based on the $R_{\phi }$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term. (English) |
MSC:
|
62B10 |
MSC:
|
62E17 |
MSC:
|
62E20 |
MSC:
|
62G10 |
idZBL:
|
Zbl 1245.62046 |
idMR:
|
MR1830648 |
. |
Date available:
|
2009-09-24T19:34:11Z |
Last updated:
|
2015-03-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135362 |
. |
Reference:
|
[1] Ali M. S., Silvey D.: A general class of coefficients of divergence of one distribution from another.J. Roy. Statist. Soc. Ser. B 28 (1966), 131–140 Zbl 0203.19902, MR 0196777 |
Reference:
|
[2] Bednarski T., Ledwina T.: A note on a biasedness of tests of fit.Mathematische Operationsforschung und Statistik, Series Statistics 9 (1978), 191–193 MR 0512257 |
Reference:
|
[3] Burbea J.: $J$-divergences and related topics.Encycl. Statist. Sci. 44 (1983), 290–296 |
Reference:
|
[4] Burbea J., Rao C. R.: On the convexity of some divergence measures based on entropy functions.IEEE Trans. Inform. Theory 28 (1982), 489–495 Zbl 0479.94009, MR 0672884, 10.1109/TIT.1982.1056497 |
Reference:
|
[5] Burbea J., Rao C. R.: On the convexity of higher order Jensen differences based on entropy function.IEEE Trans. Inform. Theory 28 (1982), 961–963 MR 0687297, 10.1109/TIT.1982.1056573 |
Reference:
|
[6] Cohen A., Sackrowitz H. B.: Unbiasedness of the chi–square, likelihood ratio, and other goodness of fit tests for the equal cell case.Ann. Statist. 3 (1975), 959–964 Zbl 0311.62021, MR 0381087, 10.1214/aos/1176343197 |
Reference:
|
[7] Cressie N., Read T. R. C.: Multinomial goodness of fit test.J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 MR 0790631 |
Reference:
|
[8] Csiszár I.: Eine Informationtheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten.Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108 MR 0164374 |
Reference:
|
[9] Greenwood P. E., Nikolin M. S.: A Guide to Chi–squared Testing.Wiley, New York 1996 MR 1379800 |
Reference:
|
[10] Liese F., Vajda I.: Convex Statistical Distances.Teubner, Leipzig 1987 Zbl 0656.62004, MR 0926905 |
Reference:
|
[11] Mann H. B., Wald A.: On the choice of the number of intervals in the application of the chi–square test.Ann. Math. Statist. 13 (1942), 306–317 MR 0007224, 10.1214/aoms/1177731569 |
Reference:
|
[12] Pardo M. C.: On Burbea–Rao divergences based goodness–of–fit tests for multinomial models.J. Multivariate Anal. 69 (1999), 65–87 MR 1701407, 10.1006/jmva.1998.1799 |
Reference:
|
[13] Pardo M. C., Vajda I.: About distances of discrete distributions satisfying the data processing theorem of information theory.Trans. IEEE Inform. Theory 43 (1997), 4, 1288–1293 Zbl 0884.94015, MR 1454961, 10.1109/18.605597 |
Reference:
|
[14] Pearson K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.Philosophy Magazine 50 (1900), 157–172 |
Reference:
|
[15] Rao C. R.: Asymptotic efficiency and limiting information.In: Proc. 4th Berkeley Symp. on Math. Statist. Probab. 1, Univ. of California Press, Berkeley 1961, pp. 531–546 Zbl 0156.39802, MR 0133192 |
Reference:
|
[16] Rao C. R.: Linear Statistical Inference and Its Applications.Second edition. Wiley, New York 1973 Zbl 0256.62002, MR 0346957 |
Reference:
|
[17] Rao C. R.: Analysis of Diversity: A Unified Approach.Technical Report No. 81-26, University of Pittsburhg 1981 Zbl 0569.62061, MR 0705316 |
Reference:
|
[18] Read T. R. C.: On Choosing a Goodness–of–fit test.Unpublished Ph.D. Thesis, Flinders University, South Australia 1982 Zbl 0564.62033 |
Reference:
|
[19] Read T. R. C.: Closer asymptotic approximations for the distributions of the power divergence goodness–of–fit statistics.Ann. Inst. Statist. Math. 36 (1984), Part A, 59–69 Zbl 0554.62015, MR 0752006, 10.1007/BF02481953 |
Reference:
|
[20] Read T. R. C., Cressie N.: Goodness of Fit Statistics for Discrete Multivariate Data.Springer, New York 1988 Zbl 0663.62065, MR 0955054 |
Reference:
|
[21] Schorr B.: On the choice of the class intervals in the application of the chi–square test.Math. Operationsforsch. Statist. 5 (1974), 357–377 Zbl 0285.62018, MR 0388650, 10.1080/02331887408801174 |
Reference:
|
[22] Siotani M., Fujikoshi Y.: Asymptotic approximations for the distributions of multinomial goodness–of–fit statistics.Hiroshima Math. J. 14 (1984), 115–124 Zbl 0553.62017, MR 0750392 |
Reference:
|
[23] Sturges H. A.: The choice of a class interval.J. Amer. Statist. Assoc. 21 (1926), 65–66 10.1080/01621459.1926.10502161 |
Reference:
|
[24] Vajda I.: Theory of Statistical Inference and Information.Kluwer Academic Publishers, Dordrecht – Boston 1989 Zbl 0711.62002 |
Reference:
|
[25] Yarnold J. K.: Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set.Ann. of Math. Statist. 43 (1972), 1566–1580 Zbl 0256.62022, MR 0372967, 10.1214/aoms/1177692389 |
Reference:
|
[26] Zografos K., Ferentinos K., Papaioannou T.: $\varphi $-divergence statistics: sampling properties and multinomial goodness of fit divergence tests.Comm. Statist. – Theory Methods 19 (1990), 5, 1785–1802 MR 1075502, 10.1080/03610929008830290 |
. |