Previous |  Up |  Next

Article

Title: Controllability of semilinear functional integrodifferential systems in Banach spaces (English)
Author: Balachandran, Krishnan
Author: Sakthivel, Rathinasamy
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 4
Year: 2000
Pages: [465]-476
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem. (English)
Keyword: controllability
Keyword: integro-differential system
Keyword: Banach space
MSC: 34G20
MSC: 93B05
MSC: 93B28
MSC: 93C25
idZBL: Zbl 1249.93017
idMR: MR1830650
.
Date available: 2009-09-24T19:34:26Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135364
.
Reference: [1] Balachandran K., Dauer J. P.: Controllability of Sobolev–type integrodifferential systems in Banach spaces.J. Math. Anal. Appl. 217 (1998), 335–348 Zbl 0927.93015, MR 1492093, 10.1006/jmaa.1997.5725
Reference: [2] Balachandran K., Dauer J. P., Balasubramaniam P.: Local null controllability of nonlinear functional differential systems in Banach spaces.J. Optim. Theory Appl. 88 (1996), 61–75 MR 1367033, 10.1007/BF02192022
Reference: [3] Chukwu E. N., Lenhart S. M.: Controllability questions for nonlinear systems in abstract spaces.J. Optim. Theory Appl. 68 (1991), 437–462 Zbl 0697.49040, MR 1097312, 10.1007/BF00940064
Reference: [4] Do V. N.: A note on approximate controllability of semilinear systems.Systems Control Lett. 12 (1989), 365–371 Zbl 0679.93004, MR 1000345, 10.1016/0167-6911(89)90047-9
Reference: [5] Fitzgibbon W. E.: Semilinear integrodifferential equations in a Banach space.Nonlinear Anal. 4 (1980), 745-760 MR 0582543, 10.1016/0362-546X(80)90075-9
Reference: [6] Heard M. L.: An abstract semilinear hyperbolic Volterra integrodifferential equation.J. Math. Anal. Appl. 80 (1981), 175–202 Zbl 0468.45011, MR 0614252, 10.1016/0022-247X(81)90101-3
Reference: [7] Kwun Y. C., Park J. Y., Ryu J. W.: Approximate controllability and controllability for delay Volterra systems.Bull. Korean Math. Soc. 28 (1991), 131–145 MR 1127732
Reference: [8] III J. H. Lightbourne, III S. M. Rankin: A partial functional differential equation of Sobolev-type.J. Math. Anal. Appl. 93 (1983), 328–337 MR 0700149, 10.1016/0022-247X(83)90178-6
Reference: [9] MacCamy R.: An integrodifferential equation with applications in heat flow.Quart. Appl. Math. 35 (1977/78), 1–19 MR 0452184
Reference: [10] Ntouyas S. K., Tsamatos P. Ch.: Global existence for semilinear evolution equations with nonlocal conditions.J. Math. Anal. Appl. 210 (1997), 679–687 Zbl 0884.34069, MR 1453198, 10.1006/jmaa.1997.5425
Reference: [11] Ntouyas S. K.: Global existence for functional semilinear integrodifferential equations.Arch. Math. 34 (1998), 239–256 MR 1645312
Reference: [12] Naito K.: Controllability of semilinear control systems dominated by the linear part.SIAM J. Control Optim. 25 (1987), 715–722 Zbl 0617.93004, MR 0885194, 10.1137/0325040
Reference: [13] Naito K.: Approximate controllability for trajectories of semilinear control systems.J. Optim. Theory Appl. 60 (1989), 57–65 Zbl 0632.93007, MR 0981945, 10.1007/BF00938799
Reference: [14] Naito K.: On controllability for a nonlinear Volterra equation.Nonlinear Anal. Theory, Methods and Applications 18 (1992), 99–108 Zbl 0768.93011, MR 1138645, 10.1016/0362-546X(92)90050-O
Reference: [15] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer, New York 1983 Zbl 0516.47023, MR 0710486
Reference: [16] Quinn M. D., Carmichael N.: An approach to nonlinear control problems using fixed point methods, degree theory, and pseudo-inverses.Numer. Funct. Anal. Optim. 7 (1984–1985), 197–219 MR 0767382
Reference: [17] Schaefer H.: Über die Methode der a Priori Schranken.Math. Ann. 129 (1955), 415–416 Zbl 0064.35703, MR 0071723, 10.1007/BF01362380
Reference: [18] Webb G.: An abstract semilinear Volterra integrodifferential equation.Proc. Amer. Math. Soc. 69 (1978), 255–260 Zbl 0388.45012, MR 0467214, 10.1090/S0002-9939-1978-0467214-4
Reference: [19] Yamamoto M., Park J. Y.: Controllability for parabolic equations with uniformly bounded nonlinear terms.J. Optim. Theory Appl. 66 (1990), 515–532 Zbl 0682.93012, MR 1080262, 10.1007/BF00940936
Reference: [20] Zhou H. X.: Approximate controllability for a class of semilinear abstract equations.SIAM J. Control Optim. 21 (1983), 551–565 Zbl 0516.93009, MR 0704474, 10.1137/0321033
.

Files

Files Size Format View
Kybernetika_36-2000-4_6.pdf 1.441Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo