Previous |  Up |  Next

Article

Title: On the state observation and stability for uncertain nonlinear systems (English)
Author: Hammami, Mohamed Ali
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 5
Year: 2000
Pages: [531]-538
Summary lang: English
.
Category: math
.
Summary: In this paper, we treat the class of nonlinear uncertain dynamic systems that was considered in [3,2,1,4]. We consider continuous-time dynamical systems whose nominal part is linear and whose uncertain part is norm-bounded. We study the problems of state observation and obtaining stabilizing controller for uncertain nonlinear systems, where the uncertainties are characterized by known bounds. (English)
Keyword: nonlinear uncertain dynamic system
Keyword: stabilizing controller
MSC: 70K20
MSC: 93B07
MSC: 93C10
MSC: 93D10
idZBL: Zbl 1249.93091
idMR: MR1882792
.
Date available: 2009-09-24T19:34:56Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135369
.
Reference: [1] Dawson D. M., Qu Z. C.Carroll J.: On the state observation and output feedback problems for nonlinear uncertain dynamic systems.Sysems Control Lett. 18 (1992), 217–222 Zbl 0752.93021, MR 1153232, 10.1016/0167-6911(92)90008-G
Reference: [2] Ferfera A., Hammami M. A.: Stabilization of composite nonlinear systems by n estimated state feedback law.In: NOLCOS’95 California 1995, pp. 697–701
Reference: [3] Hammami M. A.: Stabilization of a class of nonlinear systems using an observer design.In: Proc. 32nd IEEE Conf. Decision Control, San Antonio, Texas 1993, pp. 1954–1959
Reference: [4] Kou S., Elliott D., Tarn T.: Exponential observers for nonlinear dynamic systems.Inform. and Control 29 (1976), 3, 204–216 MR 0384227, 10.1016/S0019-9958(75)90382-4
Reference: [5] Qu Z.: Global stabilization of nonlinear systems with a class of unmatched uncertainties.Systems Control Lett. 18 (1992), 301–307 Zbl 0759.93060, MR 1158657, 10.1016/0167-6911(92)90060-6
Reference: [6] Sontag E. D.: A universal construction of Arstein’s Theorem on nonlinear stabilization.Systems Control Lett. 13 (1989), 117–123 MR 1014237, 10.1016/0167-6911(89)90028-5
Reference: [7] Thau F.: Observing the states of nonlinear dynamic systems.Internat. J. Control 17 (1993), 471–479 10.1080/00207177308932395
Reference: [8] Tsinias J.: A theorem on global stabilization of nonlinear systems by linear feedback.Systems Control Lett. 17 (1991), 357–362 Zbl 0749.93071, MR 1136537, 10.1016/0167-6911(91)90074-O
Reference: [9] Walcott B., Zak S.: State observation of nonlinear uncertain dynamical systems.IEEE. Trans. Automat. Control 32 (1987), 2, 166–170 Zbl 0618.93019, MR 0872591, 10.1109/TAC.1987.1104530
Reference: [10] Wu H., Mizukami K.: Exponential stability of a class of nonlinear dynamic systems with uncertainties.Systems Control Lett. 21 (1993), 307–313 MR 1241410, 10.1016/0167-6911(93)90073-F
.

Files

Files Size Format View
Kybernetika_36-2000-5_2.pdf 725.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo