Previous |  Up |  Next


delay system; BIBO stability
This paper analyzes the BIBO stability of fractional exponential delay systems which are of retarded or neutral type. Conditions ensuring stability are given first. As is the case for the classical class of delay systems these conditions can be expressed in terms of the location of the poles of the system. Then, in view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime and Bézout factors of these systems are determined. Moreover, nuclearity is analyzed in a particular case.
[1] Bonnet C., Partington J. R.: Bézout factors and ${L}^1$-optimal controllers for delay systems using a two-parameter compensator scheme. IEEE Trans. Automat. Control 44 (1999), 1512–1521 DOI 10.1109/9.780415 | MR 1707048
[2] Bonnet C., Partington J. R.: Analysis of fractional delay systems of retarded and neutral type. Preprint 2000 MR 2133473 | Zbl 1007.93065
[3] Bonnet C., Partington J. R.: Coprime factorizations and stability of fractional differential systems. Systems Control Lett. 41 (2000), 167–174 DOI 10.1016/S0167-6911(00)00050-5 | MR 1831424 | Zbl 0985.93048
[4] Curtain R. F., Zwart H. J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer–Verlag, Berlin 1995 MR 1351248 | Zbl 0839.93001
[5] Glover K., Curtain R. F., Partington J. R.: Realization and approximation of linear infinite dimensional systems with error bounds. SIAM J. Control Optim. 26 (1988), 863–898 DOI 10.1137/0326049 | MR 0948650
[6] Gripenberg G., Londen S. O., Staffans O.: Volterra Integral and Functional Equations. Cambridge University Press, Cambridge, U.K. 1990 MR 1050319 | Zbl 1159.45001
[7] Hille E., Phillips R. S.: Functional analysis and semi-groups. American Mathematical Society, Providence, R. I., 1957 MR 0089373 | Zbl 0392.46001
[8] Hotzel R.: Some stability conditions for fractional delay systems. J. Math. Systems, Estimation, and Control 8 (1998), 1–19 MR 1651287 | Zbl 0913.93068
[9] Loiseau J.-J., Mounier H.: Stabilisation de l’équation de la chaleur commandée en flux. Systèmes Différentiels Fractionnaires, Modèles, Méthodes et Applications. ESAIM Proceedings 5 (1998), 131–144 MR 1665567 | Zbl 0913.73052
[10] Matignon D.: Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire. Thèse de doctorat, Univ. Paris XI, 1994
[11] Partington J. R.: An Introduction to Hankel Operators. Cambridge University Press, Cambridge, U.K. 1988 MR 0985586 | Zbl 0668.47022
[12] Weber E.: Linear Transient Analysis. Volume II. Wiley, New York 1956 MR 0080524 | Zbl 0073.21801
Partner of
EuDML logo