Previous |  Up |  Next

Article

Title: Statistical-learning control of multiple-delay systems with application to ATM networks (English)
Author: Abdallah, Chaouki T.
Author: Ariola, Marco
Author: Koltchinskii, Vladimir
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 3
Year: 2001
Pages: [355]-365
Summary lang: English
.
Category: math
.
Summary: Congestion control in the ABR class of ATM network presents interesting challenges due to the presence of multiple uncertain delays. Recently, probabilistic methods and statistical learning theory have been shown to provide approximate solutions to challenging control problems. In this paper, using some recent results by the authors, an efficient statistical algorithm is used to design a robust, fixed-structure, controller for a high-speed communication network with multiple uncertain propagation delays. (English)
Keyword: multiple uncertain delays
Keyword: statistical learning theory
MSC: 68T05
MSC: 90B18
MSC: 93C23
MSC: 93C73
MSC: 93D21
idZBL: Zbl 1265.93210
idMR: MR1859091
.
Date available: 2009-09-24T19:40:09Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135414
.
Reference: [3] Benmohamed L., Wang Y. T.: A control-theoretic ABR explicit rate algorithm for ATM switches with Per-VC queuing.In: Proceedings Infocom98, San Francisco 1998, pp. 183–191
Reference: [4] Blanchini F., Cigno, R. Lo, Tempo R.: Control of ATM Networks: Fragility and Robustness Issues.In: Proceedings American Control Conference, Philadelphia 1998, pp. 2847–2851
Reference: [5] Dugard L., (eds.) E. I. Verriest: Stability and Control of Time-Delay Systems.(Lecture Notes in Control and Information Sciences 228.) Springer–Verlag, London 1997 Zbl 0901.00019, MR 1482570
Reference: [6] In, IEEE CSS.: Proc.IEEE Conference on Decision and Control, Special Sessions TA-03, TM-03, TP-03. San Diego 1997
Reference: [7] Koltchinskii V., Abdallah C. T., Ariola M., Dorato, P., Panchenko D.: Improved sample complexity estimates for statistical learning control of uncertain systems.IEEE Trans. Automat. Control 45 (2000), 12, 2383–2388 Zbl 0991.93130, MR 1808524, 10.1109/9.895579
Reference: [8] Prycker M. De: Asynchronous Transfer Mode: Solution for Broadband ISDN.Prentice–Hall, Englewood Cliffs, NJ 1995
Reference: [9] Mascolo S.: Smith’s principle for congestion control in high-speed data network.IEEE Trans. Automat. Control 45 (2000), 2, 358–364 MR 1756771, 10.1109/9.839966
Reference: [10] Niculescu S.-I., Abdallah C. T.: Delay effects on static output feedback stabilization.In: Proceedings IEEE CDC 2000, Sydney 2000
Reference: [11] Niculescu S.-I., Verriest E., Dugard, L., Dion J.-M.: Stability and robust stability of time-delay systems: A guided tour.In: Stability and Control of Time-Delay Systems, (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Information Sciences 228), Springer–Verlag, London 1997, pp. 1–71 MR 1482571
Reference: [12] Smith O. J. M.: Closer control of loops with dead time.Chem. Engr. Progress 53 (1957), 5, 217–219
Reference: [13] Toker O., Ozbay H.: Complexity issues in robust stability of linear delay-differential systems.Math. Control Signals Syst. 9 (1996), 386–400 MR 1450360, 10.1007/BF01211858
Reference: [14] Vidyasagar M.: A Theory of Learning and Generalization with Applications to Neural Networks and Control Systems.Springer–Verlag, Berlin 1996 Zbl 0928.68061, MR 1482231
Reference: [15] Vidyasagar M.: Statistical learning theory and randomized algorithms for control.IEEE Control Systems Magazine 18 (1998), 6, 69–85 MR 1632342, 10.1109/37.736014
.

Files

Files Size Format View
Kybernetika_37-2001-3_11.pdf 1.478Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo