Previous |  Up |  Next

Article

Title: A nonstandard modification of Dempster combination rule (English)
Author: Kramosil, Ivan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 1
Year: 2002
Pages: [1]-12
Summary lang: English
.
Category: math
.
Summary: It is a well-known fact that the Dempster combination rule for combination of uncertainty degrees coming from two or more sources is legitimate only if the combined empirical data, charged with uncertainty and taken as random variables, are statistically (stochastically) independent. We shall prove, however, that for a particular but large enough class of probability measures, an analogy of Dempster combination rule, preserving its extensional character but using some nonstandard and boolean-like structures over the unit interval of real numbers, can be obtained without the assumption of statistical independence of input empirical data charged with uncertainty. (English)
Keyword: nonstandard probability
Keyword: Boolean algebra
MSC: 60A05
MSC: 60E05
MSC: 68T37
idZBL: Zbl 1265.68268
idMR: MR1899844
.
Date available: 2009-09-24T19:43:30Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135443
.
Reference: [1] Dubois D., Prade H.: Théorie de Possibilités – Applications à la Représentation de Connaissances en Informatique.Mason, Paris 1985
Reference: [2] Faure R., Heurgon E.: Structures Ordonnées et Algébres de Boole.Gauthier–Villars, Paris 1971 Zbl 0219.06001, MR 0277440
Reference: [3] Halmos P. R.: Measure Theory.D. van Nostrand, New York – Toronto – London 1950 Zbl 0283.28001, MR 0033869
Reference: [4] Kramosil I.: Believeability and plausibility functions over infinite sets.Internat. J. Gen. Systems 23 (1994), 2, 173–198 10.1080/03081079508908038
Reference: [5] Kramosil I.: A probabilistic analysis of Dempster combination rule.In: The Logica Yearbook 1997, Prague 1997, pp. 175–187
Reference: [6] Kramosil I.: Probabilistic Analysis of Belief Functions.Kluwer Academic / Plenum Publishers, New York – Boston – Dordrecht – London – Moscow 2001
Reference: [7] Shafer G.: A Mathematical Theory of Evidence.Princeton Univ. Press, Princeton 1976 Zbl 0359.62002, MR 0464340
Reference: [8] Sikorski R.: Boolean Algebras.Springer–Verlag, Berlin – Göttingen – Heidelberg 1960 Zbl 0191.31505, MR 0126393
.

Files

Files Size Format View
Kybernetika_38-2002-1_1.pdf 1.482Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo