Title:
|
On the stabilizability of some classes of bilinear systems in $\Bbb R^3$ (English) |
Author:
|
Jerbi, Hamadi |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
38 |
Issue:
|
4 |
Year:
|
2002 |
Pages:
|
[457]-468 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks. (English) |
Keyword:
|
bilinear system |
Keyword:
|
stabilization by feedback |
MSC:
|
93C10 |
MSC:
|
93D15 |
idZBL:
|
Zbl 1265.93201 |
idMR:
|
MR1937140 |
. |
Date available:
|
2009-09-24T19:47:39Z |
Last updated:
|
2015-03-25 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135477 |
. |
Reference:
|
[1] Andriano V.: Some results on global and semi global stabilization of affines systems.Systems Control Lett. 33 (1998), 259–263 MR 1613086, 10.1016/S0167-6911(97)00074-1 |
Reference:
|
[2] Cima A., Llibre J.: Algebric and topological classification of the homogeneous cubic vector field in the plane.J. Math. Anal. Appl. 14 (1990), 420–448 MR 1050216, 10.1016/0022-247X(90)90359-N |
Reference:
|
[3] Čelikovský S.: On the stabilization of the homogeneuos bilinear systems.Systems Control Lett. 21 (1993), 503–510 MR 1249929, 10.1016/0167-6911(93)90055-B |
Reference:
|
[4] Chabour R., Sallet, G., Vivalda J. C.: Stabilization of nonlinear two dimensional system: a bilinear approach.Mathematics of Control, Signals and Systems (1996), 224–246 MR 1358071 |
Reference:
|
[5] Chabour O., Vivalda J. C.: Remark on local and global stabilization of homogeneuos bilinear systems.Systems Control Lett. 41 (2000), 141–143 MR 1831028, 10.1016/S0167-6911(00)00045-1 |
Reference:
|
[6] Gauthier J. P., Kupka I.: A separation principle for bilinear systems with dissipative drift.IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 Zbl 0778.93102, MR 1200614, 10.1109/9.182484 |
Reference:
|
[7] Hahn W.: Stability of Motion.Springer Verlag, Berlin 1967 Zbl 0189.38503, MR 0223668 |
Reference:
|
[8] Hammouri H., Marques J. C.: Stabilization of homogeneuos bilinear systems.Appl. Math. Lett. 7 (1994), 1, 23–28 MR 1349888, 10.1016/0893-9659(94)90047-7 |
Reference:
|
[9] Iggider A., Kalitine, B., Outbib R.: Semidefinite Lyapunov Functions Stability and Stabilization.(Mathematics of Control, Signals, and Systems 9.) Springer–Verlag, London 1996, pp. 95–106 MR 1418816, 10.1007/BF01211748 |
Reference:
|
[10] Iggider A., Kalitine, B., Sallet G.: Lyapunov theorem with semidefinite functions proceedings.In: Proc. 14th Triennial IFAC World Congress IFAC 99, Beijing 1999, pp. 231–236 |
Reference:
|
[11] Jerbi H., Hammami M. A. C.Vivalda J.: On the stabilization of homogeneous affine systems.In: Proc. 2nd IEEE Mediterranean Symposium on New Directions in Control $\&$ Automation T2.3.4, 1994, pp. 319–326 |
Reference:
|
[12] Jurdjevic V., Quinn J. P.: Controllability and stability.J. of Differentials 28 (1978), 381–389 Zbl 0417.93012, MR 0494275, 10.1016/0022-0396(78)90135-3 |
Reference:
|
[13] Ryan E. P., Buckingham N. J.: On asymptotically stabilizing feedback control of bilinear systems.IEEE Trans. Automat. Control AC–28 (1983), 8, 863–864 Zbl 0535.93050 |
. |