Previous |  Up |  Next

Article

Title: On the stabilizability of some classes of bilinear systems in $\Bbb R^3$ (English)
Author: Jerbi, Hamadi
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 4
Year: 2002
Pages: [457]-468
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks. (English)
Keyword: bilinear system
Keyword: stabilization by feedback
MSC: 93C10
MSC: 93D15
idZBL: Zbl 1265.93201
idMR: MR1937140
.
Date available: 2009-09-24T19:47:39Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135477
.
Reference: [1] Andriano V.: Some results on global and semi global stabilization of affines systems.Systems Control Lett. 33 (1998), 259–263 MR 1613086, 10.1016/S0167-6911(97)00074-1
Reference: [2] Cima A., Llibre J.: Algebric and topological classification of the homogeneous cubic vector field in the plane.J. Math. Anal. Appl. 14 (1990), 420–448 MR 1050216, 10.1016/0022-247X(90)90359-N
Reference: [3] Čelikovský S.: On the stabilization of the homogeneuos bilinear systems.Systems Control Lett. 21 (1993), 503–510 MR 1249929, 10.1016/0167-6911(93)90055-B
Reference: [4] Chabour R., Sallet, G., Vivalda J. C.: Stabilization of nonlinear two dimensional system: a bilinear approach.Mathematics of Control, Signals and Systems (1996), 224–246 MR 1358071
Reference: [5] Chabour O., Vivalda J. C.: Remark on local and global stabilization of homogeneuos bilinear systems.Systems Control Lett. 41 (2000), 141–143 MR 1831028, 10.1016/S0167-6911(00)00045-1
Reference: [6] Gauthier J. P., Kupka I.: A separation principle for bilinear systems with dissipative drift.IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 Zbl 0778.93102, MR 1200614, 10.1109/9.182484
Reference: [7] Hahn W.: Stability of Motion.Springer Verlag, Berlin 1967 Zbl 0189.38503, MR 0223668
Reference: [8] Hammouri H., Marques J. C.: Stabilization of homogeneuos bilinear systems.Appl. Math. Lett. 7 (1994), 1, 23–28 MR 1349888, 10.1016/0893-9659(94)90047-7
Reference: [9] Iggider A., Kalitine, B., Outbib R.: Semidefinite Lyapunov Functions Stability and Stabilization.(Mathematics of Control, Signals, and Systems 9.) Springer–Verlag, London 1996, pp. 95–106 MR 1418816, 10.1007/BF01211748
Reference: [10] Iggider A., Kalitine, B., Sallet G.: Lyapunov theorem with semidefinite functions proceedings.In: Proc. 14th Triennial IFAC World Congress IFAC 99, Beijing 1999, pp. 231–236
Reference: [11] Jerbi H., Hammami M. A. C.Vivalda J.: On the stabilization of homogeneous affine systems.In: Proc. 2nd IEEE Mediterranean Symposium on New Directions in Control $\&$ Automation T2.3.4, 1994, pp. 319–326
Reference: [12] Jurdjevic V., Quinn J. P.: Controllability and stability.J. of Differentials 28 (1978), 381–389 Zbl 0417.93012, MR 0494275, 10.1016/0022-0396(78)90135-3
Reference: [13] Ryan E. P., Buckingham N. J.: On asymptotically stabilizing feedback control of bilinear systems.IEEE Trans. Automat. Control AC–28 (1983), 8, 863–864 Zbl 0535.93050
.

Files

Files Size Format View
Kybernetika_38-2002-4_5.pdf 1.437Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo