Previous |  Up |  Next

Article

Title: On unequally spaced AR(1) process (English)
Author: Šindelář, Jan
Author: Knížek, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 1
Year: 2003
Pages: [13]-27
Summary lang: English
.
Category: math
.
Summary: Discrete autoregressive process of the first order is considered. The process is observed at unequally spaced time instants. Both least squares estimate and maximum likelihood estimate of the autocorrelation coefficient are analyzed. We show some dangers related with the estimates when the true value of the autocorrelation coefficient is small. Monte-Carlo method is used to illustrate the problems. (English)
Keyword: AR(1) process
Keyword: unequally spaced
Keyword: autocorrelation coefficient
Keyword: least squares estimate
Keyword: maximum likelihood estimate
MSC: 60G10
MSC: 62M10
idZBL: Zbl 1249.60071
idMR: MR1980121
.
Date available: 2009-09-24T19:50:46Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135505
.
Reference: [1] Anderson T. W.: The Statistical Analysis of Time Series.Wiley, New York 1971 Zbl 0835.62074, MR 0283939
Reference: [2] Baltagi B. H., Wu P. X.: Unequally spaced panel data regressions with AR(1) disturbances.Econometric Theory 15 (1999), 814–823 Zbl 0963.62110, 10.1017/S0266466699156020
Reference: [3] Diggle P. J., Liang K. Y., Zeger S. L.: Analysis of Longitudinal Data.Oxford University Press, New York 1994 Zbl 1031.62002
Reference: [4] Hauser M. A.: Maximum likelihood estimators for ARMA and ARFIMA models: a Monte Carlo study.J. Statist. Plann. Inference 80 (1999), 229–255 Zbl 1045.62528, MR 1713787, 10.1016/S0378-3758(98)00252-3
Reference: [5] Jones R. H.: Longitudinal Data with Serial Correlation: A State-space Approach.Chapman & Hall, New York 1993 Zbl 0851.62059, MR 1293123
Reference: [7] Jones R. H., Boadi-Boateng F.: Unequally spaced longitudinal data with AR(1) serial correlation.Biometrics 47 (1991), 161–175 10.2307/2532504
Reference: [8] Jones R. H., Vecchia A. V.: Fitting continuous ARMA models to unequally spaced spatial data.J. Amer. Statist. Assoc. 88 (1993), 947–954 Zbl 0800.62535, 10.1080/01621459.1993.10476362
Reference: [9] Kay S. M.: Fundamendals of Statistical Signal Prosessing: Estimation Theory.Prentice Hall, Englewood Cliffs, NJ 1993
Reference: [10] Kazakos D., Papantoni-Kazakos P.: Detection and Estimation.Computer Science Press, New York 1990
Reference: [11] Cam L. Le: Maximum likelihood: An introduction.Internat. Statist. Rev. 58 (1990), 2, 153–171 Zbl 0715.62045, 10.2307/1403464
Reference: [12] Mckenzie D. J.: Estimation of AR(1) models with unequally spaced pseudo-panels.Econometrics J. 4 (2001), 1, 89–108 MR 1862311, 10.1111/1368-423X.00058
Reference: [13] Sorenson H. W.: Parameter Estimation: Principles and Problems.Marcel Dekker, New York 1980 Zbl 0466.62029, MR 0591459
Reference: [14] Verbeke G., Molenberghs G.: Linear Mixed Models for Longitudinal Data.Springer Verlag, New York 2000 Zbl 1162.62070, MR 1880596
Reference: [15] Zimmerman D. L., Núñez-Antón V.: Parametric modelling of growth curve data: An overview.Test, Sociedad de Estadística e Investigación Operativa 10 (2001), 1, 1–73 Zbl 0981.62050, MR 1856193, 10.1007/BF02595823
.

Files

Files Size Format View
Kybernetika_39-2003-1_2.pdf 2.029Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo