Full entry |
PDF
(1.2 MB)
Feedback

finite-horizon LQ problems; Hamiltonian system; Riccati differential equation; algebraic Riccati equation; optimal value of the quadratic cost

References:

[1] Anderson B. D. O., Moore J. B.: **Optimal Control: Linear Quadratic Methods**. Prentice Hall, London 1989 Zbl 0751.49013

[2] Brunovský P., Komorník J.: **LQ preview synthesis: optimal control and worst case analysis**. IEEE Trans. Automat. Control 26 (1981), 2, 398–402

[3] Dorea C. E. T., Milani B. E. A.: **Design of L-Q regulators for state constrained continuous-time systems**. IEEE Trans. Automat. Control 40 (1995), 3, 544–548 DOI 10.1109/9.376078 | MR 1319262 | Zbl 0827.49023

[4] Grimble M. J.: **S-domain solution for the fixed end-point optimal-control problem**. Proc. IEE 124 (1977), 9, 802–808

[5] Ionescu V., Oară, C., Weiss M.: **Generalized Riccati Theory and Robust Control: a Popov Function Approach**. Wiley, New York 1999 MR 1681732 | Zbl 0915.34024

[6] Juang J. N., Turner J. D., Chun H. M.: **Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints**. Trans. ASME, J. Dynamic Systems, Measurement Control 108 (1986), 1, 44–48 DOI 10.1115/1.3143741 | Zbl 0596.49002

[7] Kojima A., Ishijima S.: **LQ preview synthesis: optimal control and worst case analysis**. IEEE Trans. Automat. Control 44 (1999), 2, 352–357 DOI 10.1109/9.746265 | MR 1668996 | Zbl 1056.93643

[8] Kwakernaak H., Sivan R.: **Linear Optimal Control Systems**. Wiley, New York 1972 MR 0406607 | Zbl 0276.93001

[9] Lewis F. L., Syrmos V.: **Optimal Control**. Wiley, New York 1995

[10] Marro G., Prattichizzo, D., Zattoni E.: **A geometric insight into the discrete time cheap and singular LQR problems**. IEEE Trans. Automat. Control 47 (2002), 1, 102–107 DOI 10.1109/9.981727 | MR 1879695

[11] Marro G., Prattichizzo, D., Zattoni E.: **A nested computational scheme for discrete-time cheap and singular LQ control**. SIAM J. Control Optim. 2002 (to appear)

[12] Marro G., Prattichizzo, D., Zattoni E.: **Previewed signal ${H}_2$ optimal decoupling by finite impulse response compensators**. Kybernetika 38 (2002), 4, 479–492 MR 1937142