Title:
|
The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. I (English) |
Author:
|
Štěpán, Josef |
Author:
|
Dostál, Petr |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
39 |
Issue:
|
6 |
Year:
|
2003 |
Pages:
|
[653]-680 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients $b$ and $\sigma $ being generally $C({\mathbb{R}}^+)$-progressive processes. Any weak solution $X$ is called a $(b,\sigma )$-stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution $\mu _\sigma $ of $X$ in $C({\mathbb{R}}^+)$ in the special case of a diffusion volatility $\sigma (X,t)=\tilde{\sigma }(X(t)).$ A martingale option pricing method is presented. (English) |
Keyword:
|
weak solution and uniqueness in law in the SDE-theory |
Keyword:
|
$(b,\sigma )$-stock price |
Keyword:
|
its Girsanov and DDS-reduction |
Keyword:
|
investment process |
Keyword:
|
option pricing |
MSC:
|
60H10 |
MSC:
|
91B28 |
MSC:
|
91G20 |
idZBL:
|
Zbl 1249.91128 |
idMR:
|
MR2035643 |
. |
Date available:
|
2009-09-24T19:57:50Z |
Last updated:
|
2015-03-24 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135564 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/135565 |
. |
Reference:
|
[1] Beckers S.: The constant elasticity of variance model and its implications for option pricing.J. Finance 35 (1980), 661–673 10.1111/j.1540-6261.1980.tb03490.x |
Reference:
|
[2] Billingsley P.: Convergence of Probability Measures.Wiley, New York – Chichester – Weinheim 1999 Zbl 0944.60003, MR 1700749 |
Reference:
|
[3] Borovkov K., Novikov A.: On a new approach to calculating expectations for option pricing.J. Appl. Probab. 39 (2002), 4, 889–895 Zbl 1016.60053, MR 1938179, 10.1239/jap/1037816027 |
Reference:
|
[4] Cohn D. C.: Measure Theory.Birkhäuser, Boston 1980 Zbl 0860.28001, MR 0578344 |
Reference:
|
[5] Cox J. C.: Notes on option pricing I: Constant elasticity of variance diffusions.Stanford University Preprint, 1975 |
Reference:
|
[6] Dupačová J., Hurt, J., Štěpán J.: Stochastic Modeling in Economics and Finance.Kluwer, Dordrecht 2002 Zbl 1094.91051 |
Reference:
|
[7] Geman H., Madan D. B., Yor M.: Stochastic volatility, jumps and hidden time changes.Finance and Stochastics 6 (2002), 63–90 Zbl 1006.60026, MR 1885584, 10.1007/s780-002-8401-3 |
Reference:
|
[8] Kallenberg O.: Foundations of Modern Probability.Springer–Verlag, New York – Berlin – Heidelberg 1997 Zbl 0996.60001, MR 1464694 |
Reference:
|
[9] Karatzas I., Shreve D. E.: Brownian Motion and Stochastic Calculus.Springer–Verlag, New York – Berlin – Heidelberg 1991 Zbl 0734.60060, MR 1121940 |
Reference:
|
[10] Merton R. C.: Optimum consumption and portfolio rules in a continuous time model.J. Econom. Theory 3 (1971), 373–413 Zbl 1011.91502, MR 0456373, 10.1016/0022-0531(71)90038-X |
Reference:
|
[11] Revuz D., Yor M.: Continuous Martingales and Brownian Motion.Springer–Verlag, New York – Berlin – Heidelberg 1994 Zbl 1087.60040, MR 1303781 |
Reference:
|
[12] Rogers L. C. G., Williams D.: Diffusions, Markov Processes and Martingales.Volume 1: Foundations. Cambridge University Press, Cambridge 2000 Zbl 0977.60005, MR 1796539 |
Reference:
|
[13] Rogers L.C.G., Williams D.: Diffusions, Markov Processes and Martingales.Volume 2: Itô Calculus. Cambridge University Press, Cambridge 2000 Zbl 0977.60005, MR 1780932 |
Reference:
|
[14] Scott L. O.: Option pricing when variance changes randomly: theory, estimation, and an application.J. Finan. Quant. Anal. 22 (1987), 419–438 10.2307/2330793 |
Reference:
|
[15] Scott L. O.: Random-variance option pricing: empirical tests of the model and delta-sigma hedging.Adv. in Futures Option Res. 5 (1991), 113–135 |
Reference:
|
[16] Steele J. M.: Stochastic Calculus and Financial Applications.Springer–Verlag, New York – Berlin – Heidelberg 2001 Zbl 0962.60001, MR 1783083 |
Reference:
|
[17] Wiggins J. B.: Option values under stochastic volatility: theory and empirical estimates.J. Finan. Econom. 19 (1987), 351–372 10.1016/0304-405X(87)90009-2 |
Reference:
|
[18] Yor M.: Quelques résultats sur certaines measures extrémales à la representation des martingales.(Lecture Notes in Mathematics 695.) Springer–Verlag, New York – Berlin – Heidelberg 1979 |
. |