Previous |  Up |  Next

Article

Title: A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems (English)
Author: Aranda-Bricaire, Eduardo
Author: Kotta, Ülle
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 2
Year: 2004
Pages: [197]-206
Summary lang: English
.
Category: math
.
Summary: The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP. (English)
Keyword: controlled invariance
Keyword: dynamic state feedback
Keyword: disturbance decoupling
Keyword: differential forms
MSC: 58A10
MSC: 93B25
MSC: 93C10
MSC: 93C55
idZBL: Zbl 1249.93120
idMR: MR2069178
.
Date available: 2009-09-24T20:00:33Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135588
.
Reference: [1] Aranda-Bricaire E., Kotta Ü.: Dynamic disturbance decoupling for discrete-time nonlinear systems: a linear algebraic solution.In: Proc. IFAC Conference on System Structure and Control, Nantes, France, July 1995, pp. 155–160
Reference: [2] Aranda-Bricaire E., Kotta, Ü., Moog C.: Linearization of discrete-time systems.SIAM J. Control Optim. 34 (1996), 1999–2023 Zbl 0863.93014, MR 1416497, 10.1137/S0363012994267315
Reference: [3] Aranda-Bricaire E., Kotta Ü.: Generalized controlled invariance for discrete-time nonlinear systems with an application to the dynamic disturbance decoupling problem.IEEE Trans. Automat. Control 46 (2001), 165–171 Zbl 1056.93549, MR 1809482, 10.1109/9.898712
Reference: [4] Delaleau E., Fliess M.: Algorithme de structure, filtrations et découplage.C. R. Acad. Sci. Paris 315 (1992), Serie I, 101–106 Zbl 0791.68113, MR 1172415
Reference: [5] Delaleau E., Fliess M.: An algebraic interpretation of the structure algorithm with an application to feedback decoupling.In: Nonlinear Control Systems Design – Selected Papers from the 2nd IFAC Symposium (M. Fliess, ed.), Pergamon Press, Oxford 1993, pp. 489–494
Reference: [6] Fliegner T., Nijmeijer H.: Dynamic disturbance decoupling for nonlinear discrete-time systems.In: Proc. 33rd IEEE Conference on Decision and Control, Buena Vista, Florida 1994, Volume 2, pp. 1790–1791
Reference: [7] Fliess M.: Automatique en temps discret et algèbre aux différences.Forum Mathematicum 2 (1990), 213–232 Zbl 0706.93039, MR 1050406, 10.1515/form.1990.2.213
Reference: [8] Grizzle J. W.: Controlled invariance for discrete-time nonlinear systems with an application to the disturbance decoupling problem.IEEE Trans. Automat. Control 30 (1985), 868–873 MR 0799480, 10.1109/TAC.1985.1104079
Reference: [9] Grizzle J. W.: A linear algebraic framework for the analysis of discrete-time nonlinear systems.SIAM J. Control Optim. 31 (1993), 1026–1044 Zbl 0785.93036, MR 1227545, 10.1137/0331046
Reference: [10] Huijberts H. J. C., Moog C. H.: Controlled invariance of nonlinear systems: nonexact forms speak louder than exact forms.In: Systems and Networks: Mathematical Theory and Application, Volume II (U. Helmke, R. Mennicken, and J. Saurer, eds.), Akademie Verlag, Berlin 1994, pp. 245–248 Zbl 0925.93412
Reference: [11] Huijberts H. J. C., Moog C. H., Andiarti R.: Generalized controlled invariance for nonlinear systems.SIAM J. Control Optim. 35 (1997), 953–979 Zbl 1047.93526, MR 1444345, 10.1137/S0363012994277190
Reference: [12] Kotta Ü.: Dynamic disturbance decoupling for discrete-time nonlinear systems: the nonsquare and noninvertible case.Proc. Estonian Academy of Sciences. Phys. Math. 41 (1992), 14–22 MR 1167108
Reference: [13] Kotta Ü.: Dynamic disturbance decoupling for discrete-time nonlinear systems: a solution in terms of system invariants.Proc. Estonian Academy of Sciences Phys. Math. 43 (1994), 147–159 Zbl 0837.93024, MR 1315192
Reference: [14] Kotta Ü., Nijmeijer H.: Dynamic disturbance decoupling for nonlinear discrete-time systems (in Russian).Proc. Academy of Sciences of USSR,. Technical Cybernetics, 1991, pp. 52–59
Reference: [15] Monaco S., Normand-Cyrot D.: Invariant distributions for discrete-time nonlinear systems.Systems Control Lett. 5 (1984), 191–196 Zbl 0556.93031, MR 0777852, 10.1016/S0167-6911(84)80102-4
Reference: [16] Nijmeijer H., Schaft A. van der: Nonlinear Dynamical Control Systems.Springer-Verlag, Berlin 1990 MR 1047663
Reference: [17] Perdon A. M., Conte, G., Moog C. H.: Some canonical properties of nonlinear systems.In: Realization and Modeling in System Theory (M. A. Kaashoek, J. H. van Schuppen, and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 89–96 Zbl 0729.93035, MR 1115318
.

Files

Files Size Format View
Kybernetika_40-2004-2_3.pdf 1.256Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo