Previous |  Up |  Next

Article

Keywords:
geometric sum; upper bound for the uniform distance; stability; risk process; ruin probability
Summary:
The upper bounds of the uniform distance $\rho \left(\sum ^\nu _{k=1}X_k,\sum ^\nu _{k=1}\tilde{X}_k\right)$ between two sums of a random number $\nu $ of independent random variables are given. The application of these bounds is illustrated by stability (continuity) estimating in models in queueing and risk theory.
References:
[1] Asmussen S.: Applied Probability and Queues. Wiley, Chichester 1987 MR 0889893 | Zbl 1029.60001
[2] Brown M.: Error bounds for exponential approximation of geometric convolutions. Ann. Probab. 18 (1990), 1388–1402 DOI 10.1214/aop/1176990750 | MR 1062073
[3] Feller W.: An Introduction to Probability Theory and Its Applications. Volume 2. Wiley, New York 1971 MR 0270403 | Zbl 0598.60003
[4] Gertsbakh I. B.: Asymptotic methods in reliability theory: A review. Adv. in Appl. Probab. 16 (1984), 147–175 DOI 10.2307/1427229 | MR 0732135 | Zbl 0528.60085
[5] Gordienko E. I.: Estimates of stability of geometric convolutions. Appl. Math. Lett. 12 (1999), 103–106 DOI 10.1016/S0893-9659(99)00064-6 | MR 1750146 | Zbl 0944.60035
[6] Gordienko E. I., Chávez J. Ruiz de: New estimates of continuity in $M|GI|1|\infty $ queues. Queueing Systems Theory Appl. 29 (1998), 175–188 MR 1654484
[7] Grandell J.: Aspects of Risk Theory. Springer–Verlag, Heidelberg 1991 MR 1084370 | Zbl 0717.62100
[8] Kalashnikov V. V.: Mathematical Methods in Queuing Theory. Kluwer, Dordrecht 1994 MR 1319595 | Zbl 0836.60098
[9] Kalashnikov V. V.: Two-sided bounds of ruin probabilities. Scand. Actuar. J. 1 (1996), 1–18 DOI 10.1080/03461238.1996.10413959 | MR 1396522 | Zbl 0845.62075
[10] Kalashnikov V. V.: Geometric Sums: Bounds for Rare Events with Applications. Kluwer, Dordrecht 1997 MR 1471479 | Zbl 0881.60043
[11] Kalashnikov V. V., Rachev S. T.: Mathematical Methods for Construction of Queueing Models. Wadsworth & Brooks/Cole, Pacific Grove 1990 MR 1052651 | Zbl 0709.60096
[12] Petrov V. V.: Sums of Independent Random Variables, Springer–Verlag, Berlin 197. MR 0388499
[13] Rachev S. T.: Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester 1991 MR 1105086 | Zbl 0744.60004
[14] Senatov V. V.: Normal Approximation: New Results, Methods and Problems. VSP, Utrecht 1998 MR 1686374 | Zbl 0926.60005
[15] Ushakov V. G., Ushakov V. G.: Some inequalities for characteristic functions with bounded variation. Moscow Univ. Comput. Math. Cybernet. 3 (2001), 45–52
[16] Zolotarev V.: Ideal metrics in the problems of probability theory. Austral. J. Statist. 21 (1979), 193–208 DOI 10.1111/j.1467-842X.1979.tb01139.x | MR 0561947 | Zbl 0428.62012
Partner of
EuDML logo