[2] Bank B., Giusti M., Heintz, J., Pardo L. M.:
Generalized polar varieties: Geometry and algorithms. Manuscript. Humboldt Universität zu Berlin, Institut für Mathematik 2003. Submitted to J. Complexity
MR 2152713 |
Zbl 1085.14047
[4] Bank B., Giusti M., Heintz, J., Mbakop G. M.:
Polar varieties and efficient real elimination. Math.Z. 238 (2001), 115–144. Digital Object Identifier (DOI) 10.1007/s002090100248
DOI 10.1007/PL00004896 |
MR 1860738 |
Zbl 1073.14554
[5] Bank B., Giusti M., Heintz, J., Mbakop G. M.:
Polar varieties, real equation solving and data structures: The hypersurface case. J. Complexity 13 (1997), 1, 5–27. Best Paper Award J. Complexity 1997
DOI 10.1006/jcom.1997.0432 |
MR 1449757 |
Zbl 0872.68066
[7] Basu S., Pollack, R., Roy M.-F.:
Complexity of computing semi-algebraic descriptions of the connected components of a semialgebraic set. In: Proc. ISSAC’98, (XXX. Gloor and XXX. Oliver, eds.), Rostock 1998, pp. 13–15. ACM Press. (1998), 25–29
MR 1805168 |
Zbl 0960.14033
[8] Bochnak J., Coste, M., Roy M.–F.:
Géométrie algébrique réelle. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin – Heidelberg – New York 1987
MR 0949442 |
Zbl 0633.14016
[9] Bruns W., Vetter U.:
Determinantal Rings. (Lecture Notes in Mathematics 1327), Springer, Berlin 1988
MR 0953963 |
Zbl 1079.14533
[10] Bürgisser P., Clausen, M., Shokrollahi M. A.:
Algebraic complexity theory. With the collaboration of Thomas Lickteig. (Grundlehren der Mathematischen Wissenschaften 315), Springer, Berlin 1997
MR 1440179 |
Zbl 1087.68568
[11] Canny J. F.: Some algebraic and geometric computations in PSPACE. In: Proc. 20th ACM Symp. on Theory of Computing 1988, pp. 460–467
[14] Castro D., Hägele K., Morais J. E., Pardo L. M.:
Kronecker’s and Newton’s approaches to solving: A first comparision. J. Complexity 17 (2001), 1, 212–303
DOI 10.1006/jcom.2000.0572 |
MR 1817613
[15] Coste M., Roy M.-F.:
Thom’s Lemma, the coding of real algebraic numbers and the computation of the topology of semialgebraic sets. J. Symbolic Comput. 5 (1988), 121–130
DOI 10.1016/S0747-7171(88)80008-7 |
MR 0949115
[17] Demazure M.:
Catastrophes et bifurcations. Ellipses, Paris 1989
Zbl 0907.58002
[19] Eagon J. A., Hochster M.:
R–sequences and indeterminates. O.J. Math., Oxf. II. Ser. 25 (1974), 61–71
MR 0337934 |
Zbl 0278.13008
[20] Eisenbud D.:
Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York 1995
MR 1322960 |
Zbl 0819.13001
[21] Fulton W.:
Intersection Theory. (Ergebnisse der Mathematik und ihrer Grenzgebiete 3), Springer, Berlin 1984
MR 0732620 |
Zbl 0935.00036
[22] Gathen J. von zur: Parallel linear algebra. In: Synthesis of Parallel Algorithmns (J. Reif, ed.), Morgan Kaufmann 1993
[31] Heintz J., Roy, M.–F., Solernó P.:
Complexité du principe de Tarski–Seidenberg. CRAS, t. 309, Série I, Paris 1989, pp. 825–830
MR 1055203 |
Zbl 0704.03013
[32] Heintz J., Roy,, M–F., Solernó P.:
Sur la complexité du principe de Tarski–Seidenberg. Bull. Soc. Math. France 18 (1990), 101–126
MR 1077090 |
Zbl 0767.03017
[33] Heintz J., Schnorr C. P.:
Testing polynomials which are easy to compute. In: Proc. 12th Ann. ACM Symp. on Computing, 1980, pp. 262–268, also in: Logic and Algorithmic: An Int. Symposium held in Honour of Ernst Specker, Monographie No.30 de l’Enseignement de Mathématiques, Genève 1982, pp. 237–254
MR 0648305
[34] Krick T., Pardo L. M.:
A computational method for diophantine approximation. In: Proc. MEGA’94, Algorithms in Algebraic Geometry and Applications, (L. Gonzales-Vega and T. Recio, eds.), (Progress in Mathematics 143), Birkhäuser, Basel 1996, pp. 193-254
MR 1414452 |
Zbl 0878.11043
[35] Kunz E.:
Kähler Differentials. Advanced Lectures in Mathematics. Vieweg, Braunschweig – Wiesbaden 1986
MR 0864975 |
Zbl 0587.13014
[37] Lecerf G.: Une alternative aux méthodes de réécriture pour la résolution des systèmes algébriques. Thèse. École Polytechnique 2001
[39] Lehmann L., Waissbein A.: Wavelets and semi–algebraic sets. In: WAIT 2001, (M. Frias and J. Heintz eds.), Anales JAIIO 30 (2001), 139–155
[41] Matsumura H.:
Commutative Ring Theory. (Cambridge Studies in Adv. Math. 8), Cambridge Univ. Press, Cambridge 1986
MR 0879273 |
Zbl 0666.13002
[42] Piene R.:
Polar classes of singular varieties. Ann. Scient. Éc. Norm. Sup. 4. Série, t. 11 (1978), 247–276
MR 0510551 |
Zbl 0401.14007
[43] Renegar J.: A faster PSPACE algorithm for the existential theory of the reals. In: Proc. 29th Annual IEEE Symposium on the Foundation of Computer Science 1988, pp. 291–295
[44] Renegar J.:
On the computational complexity and geometry of the first order theory of the reals. J. Symbolic Comput. 13 (1992), 3, 255–352
MR 1156882 |
Zbl 0798.68073
[45] Din M. Safey El: Résolution réelle des systèmes polynomiaux en dimension positive. Thèse. Université Paris VI 2001
[46] Din M. Safey El, Schost E.:
Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In: Proc. 2003 International Symposium on Symbolic and Algebraic Computation (ISSAC 2003), ACM Press 2003, pp. 224–231
MR 2035216
[47] Spivak M.:
Calculus on Manifolds. A Modern Approach to Classical Theorems of Calculus. W. A. Benjamin, Inc., New York – Amsterdam 1965
MR 0209411 |
Zbl 0381.58003
[48] Teissier B.:
Variétés Polaires. II. Multiplicités polaires, sections planes et conditions de Whitney. Algebraic geometry (La Rábida, 1981), (J. M. Aroca, R. Buchweitz, M. Giusti and M. Merle eds.), pp. 314–491, (Lecture Notes in Math. 961) Springer, Berlin 1982, pp. 314–491
MR 0708342 |
Zbl 0572.14002