Previous |  Up |  Next

Article

Title: A note on a class of equilibrium problems with equilibrium constraints (English)
Author: Outrata, Jiří V.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 5
Year: 2004
Pages: [585]-594
Summary lang: English
.
Category: math
.
Summary: The paper concerns a two-level hierarchical game, where the players on each level behave noncooperatively. In this way one can model eg an oligopolistic market with several large and several small firms. We derive two types of necessary conditions for a solution of this game and discuss briefly the possibilities of its computation. (English)
Keyword: hierarchical game
Keyword: Nash equilibrium
Keyword: stationarity conditions
MSC: 49J40
MSC: 49J52
MSC: 49K40
MSC: 65K10
MSC: 90C30
MSC: 90C47
MSC: 91A65
MSC: 91B24
idZBL: Zbl 1249.49017
idMR: MR2120998
.
Date available: 2009-09-24T20:04:02Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135618
.
Reference: [1] J.-P.Aubin: Optima and Equilibria.Springer–Verlag, Berlin 1993 Zbl 1074.91579, MR 1217485
Reference: [2] Clarke F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983 Zbl 0696.49002, MR 0709590
Reference: [3] Dontchev A. D., Rockafellar R. T.: Characterization of strong regularity for variational inequalities over polyhedral convex sets.SIAM J. Optim. 7 (1996), 1087–1105 MR 1416530, 10.1137/S1052623495284029
Reference: [4] Eaves B. C.: Homotopies for computation of fixed points.Math. Programming 3 (1972), 1–22 Zbl 0276.55004, MR 0303953, 10.1007/BF01584975
Reference: [5] Fang S. C., Peterson E. L.: Generalized variational inequalities.J. Optim. Theory Appl. 38 (1982), 363–383 Zbl 0471.49007, MR 0686212, 10.1007/BF00935344
Reference: [6] Harker P. T., Choi S. C.: A Penalty Function Approach for Mathematical Programs with Variational Inequality Constraints.WP 87-08-08, University of Pennsylvania Zbl 0732.90075
Reference: [7] Hu X., Ralph D., Ralph E. K., Bardsley, P., Ferris M. C.: The Effect of Transmission Capacities on Competition in Deregulated Electricity Markets.Preprint 2002
Reference: [8] Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge 1996 Zbl 1139.90003, MR 1419501
Reference: [9] Mordukhovich B. S.: Approximation Methods in Problems of Optimization and Control (in Russian).Nauka, Moscow 1988 MR 0945143
Reference: [10] Mordukhovich B. S.: Generalized differential calculus for nonsmooth and set-valued mappings.J. Math. Anal. Appl. 183 (1994), 250–288 Zbl 0807.49016, MR 1273445, 10.1006/jmaa.1994.1144
Reference: [11] Mordukhovich B. S.: Optimization and Equilibrium Problems with Equilibrium Constraints.Preprint 2003. To appear in Omega Zbl 1161.49015, MR 2473868
Reference: [12] Mordukhovich B. S.: Equlibrium problems with equilibrium constraints via multiobjective optimization.Optimization Methods & Software 19 (2004), 5 MR 2095348, 10.1080/1055678042000218966
Reference: [13] Murphy F. H., Sherali H. D., Soyster A. L.: A mathematical programming approach for determining oligopolistic market equilibrium.Math. Programming 24 (1982), 92–106 Zbl 0486.90015, MR 0667941, 10.1007/BF01585096
Reference: [14] Nash J. F.: Non-cooperative games.Ann. of Math. 54 (1951), 286–295 Zbl 0045.08202, MR 0043432, 10.2307/1969529
Reference: [15] Outrata J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints.Math. Oper. Res. 24 (1999), 627–644 Zbl 1039.90088, MR 1854246, 10.1287/moor.24.3.627
Reference: [16] Outrata J. V.: On constrained qualifications for mathematical programs with mixed complementarity constraints.In: Complementarity: Applications, Algorithms and Extensions (M. C. Ferris, O. L. Mangasarian and J.-S. Pang, eds.), Kluwer, Dordrecht 2001, pp. 253–272 MR 1818625
Reference: [17] Outrata J. V., Zowe J.: A numerical approach to optimization problems with variational inequality constraints.Math. Programming 68 (1995), 105–130 Zbl 0835.90093, MR 1312107, 10.1007/BF01585759
Reference: [18] Outrata J. V., Kočvara, M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints.Kluwer, Dordrecht 1998 Zbl 0947.90093, MR 1641213
Reference: [19] Robinson S. M.: Some continuity properties of polyhedral multifunctions.Math. Programming Stud. 14 (1981), 206–214 Zbl 0449.90090, MR 0600130, 10.1007/BFb0120929
Reference: [20] Scholtes S.: On the existence and computation of EPEC solutions.A talk given at the ICCP Conference in Cambridge, 2002
Reference: [21] Scheel H., Scholtes S.: Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity.Math. Oper. Res. 25 (2000), 1–22 MR 1854317, 10.1287/moor.25.1.1.15213
Reference: [22] Ye J. J., Ye X. Y.: Necessary optimality conditions for optimization problems with variational inequality constraints.Math. Oper. Res. 22 (1997), 977–997 Zbl 1088.90042, MR 1484692, 10.1287/moor.22.4.977
.

Files

Files Size Format View
Kybernetika_40-2004-5_5.pdf 1.144Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo