Previous |  Up |  Next

Article

Keywords:
multistage stochastic programming problem; approximation solution scheme; deterministic approximation; empirical estimate; Markov dependence
Summary:
A general multistage stochastic programming problem can be introduced as a finite system of parametric (one-stage) optimization problems with an inner type of dependence. Evidently, this type of the problems is rather complicated and, consequently, it can be mostly solved only approximately. The aim of the paper is to suggest some approximation solution schemes. To this end a restriction to the Markov type of dependence is supposed.
References:
[1] Anděl J.: Mathematical Statistics (in Czech). SNTL, Prague 1985
[2] Dal L., Chen C. H., Birge J. R.: Convergence properties of two-stage stochastic programming. J. Optim. Theory Appl. 106 (2000), 3, 489–509 DOI 10.1023/A:1004649211111 | MR 1797371
[3] Dupačová J., Wets R. J.-B.: Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517–1549 DOI 10.1214/aos/1176351052 | MR 0964937
[4] Dupačová J.: Multistage stochastic programs: The state-of-the-art and selected bibliography. Kybernetika 31 (1995), 151–174 MR 1334507 | Zbl 0860.90093
[5] Hoeffding W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 38 (1963), 13–30 DOI 10.1080/01621459.1963.10500830 | MR 0144363 | Zbl 0127.10602
[6] Houda M.: Stability and Estimates in Stochastic Programming (Special Cases) (in Czech). Diploma Work. Faculty of Mathematics and Physics, Charles University, Prague 2001
[7] Kaňková V.: An approximative solution of stochastic optimization problem. In: Trans. Eighth Prague Conference, Academia, Prague 1978, pp. 349–353
[8] Kaňková V.: Approximative solution of problems of two–stage stochastic nonlinear programming (in Czech). Ekonomicko–matematický obzor 16 (1980), 1, 64–76 MR 0571742
[9] Kaňková V., Lachout P.: Convergence rate of empirical estimates in stochastic programming. Informatica 3 (1992), 4, 497–522 MR 1243755 | Zbl 0906.90133
[10] Kaňková V.: A note on estimates in stochastic programming. J. Comput. Math. 56 (1994), 97–112 DOI 10.1016/0377-0427(94)90381-6 | MR 1338638
[11] Kaňková V.: A note on multistage stochastic programming. In: Proc. 11th joint Czech–Germany–Slovak Conference: Mathematical Methods in Economy and Industry. University of Technology, Liberec (Czech Republic) 1998, pp. 45–52
[12] Kaňková V.: A remark on the analysis of multistage stochastic programs: Markov dependence. Z. angew. Math. Mech. 82 (2002), 11–12, 781–793 MR 1944422 | Zbl 1028.90031
[13] Kaňková V.: A remark on empirical estimates in multistage stochastic programming. Bulletin of the Czech Econometric Society 17/2002, 32–51
[14] Kaňková V., Šmíd M.: A Remark on Approximation in Multistage Stochastic Programs; Markov Dependence. Research Report ÚTIA AS CR, No. 2102, July 2004 MR 2121001
[15] Pfug G. Ch.: Optimization of Stochastic Models; The Interface Between Simulation and Optimization. Kluwer, London 1996 MR 1492446
[16] Prékopa A.: Stochastic Programming. Kluwer, Dordrecht and Académiai Kiadó, Budapest 1995 MR 1375234 | Zbl 1219.90114
[17] Rachev S. T.: Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester 1991 MR 1105086 | Zbl 0744.60004
[18] Römisch W., Wakolbinger A.: Obtaining convergence rate for approximations in stochastic programming. In: Parametric Optimization and Related Topics (J. Guddat, ed.), Akademie Verlag, Berlin 1987, pp. 327–343 MR 0909737
[19] Römisch W., Schulz R.: Stability of solutions for stochastic programs with complete recourse. Math. Oper. Res. 18 (1993), 590–609 DOI 10.1287/moor.18.3.590 | MR 1250562
[20] Shapiro A.: Quantitative stability in stochastic programming. Math. Programming 67 (1994), 99–108 DOI 10.1007/BF01582215 | MR 1300821 | Zbl 0828.90099
[21] Serfling J. R.: Approximation Theorems of Mathematical Statistics. Wiley, New York 1980 MR 0595165 | Zbl 1001.62005
[22] Šmíd M.: Notes on Approximate Computation of Expectation. Research Report ÚTIA AS CR, No. 2077, May 2003
[23] Schulz R.: Rates of convergence in stochastic programs with complete integer recourse. SIAM J. Optim. 6 (1996), 1138–1152 DOI 10.1137/S1052623494271655 | MR 1416533
[24] Vallander S. S.: Calculation of the Wasserstein distance between probability distributions on the line (in Russian). Theor. Prob. Appl. 18 (1973), 783–76 MR 0328982
[25] Vogel S.: On stability in multiobjective programming – a stochastic approach. Math. Programming 56 (1992), 91–119 DOI 10.1007/BF01580896 | MR 1175561 | Zbl 0770.90061
[26] Wang J.: Continuity of the feasible solution sets of probabilistic constrained programs. J. Optim. Theory Appl. 63 (1994), 1, 79–89 DOI 10.1007/BF00940733 | MR 1022368
Partner of
EuDML logo