Previous |  Up |  Next

Article

Title: Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization (English)
Author: Čelikovský, Sergej
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 40
Issue: 6
Year: 2004
Pages: [649]-664
Summary lang: English
.
Category: math
.
Summary: This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999)], the hyperbolic-type generalized Lorenz system is in some way complementary to it. Synchronization of two such systems is made through a scalar coupling signal based on nonlinear observer design using special change of coordinates to the so-called observer canonical form of the hyperbolic-type generalized Lorenz system. The properties of the suggested synchronization that make it attractive for the the secure encrypted communication application are discussed in detail. Theoretical results are supported by the computer simulations, showing viability of the suggested approach. (English)
Keyword: nonlinear
Keyword: chaotic
Keyword: synchronization
Keyword: observer
MSC: 93B07
MSC: 93C10
MSC: 93D15
MSC: 93D20
idZBL: Zbl 1249.93090
idMR: MR2120388
.
Date available: 2009-09-24T20:04:49Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135624
.
Reference: [1] Agiza H. N., Yassen M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control.Phys. Lett. A 278 (2000), 191–197 Zbl 0972.37019, MR 1827067, 10.1016/S0375-9601(00)00777-5
Reference: [2] Alvarez-Ramirez J., Puebla, H., Cervantes I.: Stability of observer-based chaotic communications for a class of Lur’e systems.Internat. J. Bifur. Chaos 7 (2002), 1605–1618 10.1142/S0218127402005352
Reference: [3] Blekman I. I., Fradkov A. L., Nijmeijer, H., Pogromsky A. Y.: On self-synchronization and controlled synchronization.Systems Control Lett. 31 (1997), 299–305 MR 1482331, 10.1016/S0167-6911(97)00047-9
Reference: [4] Čelikovský S., Vaněček A.: Bilinear systems and chaos.Kybernetika 30 (1994), 403–424
Reference: [5] Čelikovský S., Chen G.: On a generalized Lorenz canonical form of chaotic systems.Internat. J. Bifur. Chaos 12 (2002), 1789–1812 Zbl 1043.37023, MR 1927413, 10.1142/S0218127402005467
Reference: [6] Čelikovský S., Chen G.: Synchronization of a class of chaotic systems via a nonlinear observer approach.In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 3895–3900
Reference: [7] Čelikovský S., Chen G.: Hyperbolic-type generalized Lorenz system and its canonical form.In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM
Reference: [8] Čelikovský S., Ruiz-Léon J. J., Sapiens A. J., Torres-Muñoz J. A.: Output feedback problems for a class of nonlinear systems.Kybernetika 39 (2003), 389–414 MR 2024522
Reference: [9] Chen G., Dong X.: From Chaos to Order: Methodologies, Perspectives, and Applications.World Scientific, Singapore 1998 Zbl 0908.93005, MR 1642791
Reference: [10] Chen G., Ueta T.: Yet another chaotic attractor.Internat. J. Bifur. Chaos 9 (1999), 1465–1466 Zbl 0962.37013, MR 1729683, 10.1142/S0218127499001024
Reference: [11] Dachselt F., Schwartz W.: Chaos and cryptography.IEEE Trans. Circuits and Systems 48 (2001), 1498–1509 MR 1873100, 10.1109/TCSI.2001.972857
Reference: [12] Fradkov A. L., Nijmeijer, H., Pogromsky A. Yu.: Adaptive observer based synhronization.In: Controlling Chaos and Bifurcations in Engineering Systems (G. Chen, ed.), CRC Press, Boca Raton 1999, pp. 417–435 MR 1756071
Reference: [13] Grassi G., Mascolo S.: Synchronization of high-order oscillators by observer design with application to hyperchaos-based cryptography.Internat. J. Circuit Theory Appl. 27 (1999), 543–553 Zbl 0961.37029, 10.1002/(SICI)1097-007X(199911/12)27:6<543::AID-CTA81>3.0.CO;2-4
Reference: [14] Itoh M., Chua L. O.: Reconstruction and synchronization of hyperchaotic circuits via one state variable.Internat. J. Bifur. Chaos 12 (2002), 2069–2085 Zbl 1046.94019, MR 1941272, 10.1142/S0218127402005704
Reference: [15] Krener A. J.: Nonlinear stabilizability and detectability.In: Systems and Networks: Mathematical Theory and Applications, Vol. I (U. Helmke, R. Mennicken, and J. Sauer, eds.), Akademie Verlag, Berlin 199x, pp. 231–250 MR 1288114
Reference: [16] Krener A. J., Isidori A.: Linearization by output injection and nonlinear observers.Systems Control Lett. 3 (1983), 47–52 Zbl 0524.93030, MR 0713426
Reference: [17] Krener A. J., Respondek W.: Nonlinear observers with linearizable error dynamics.SIAM J. Control Optim. 23 (1985), 197–216 Zbl 0569.93035, MR 0777456, 10.1137/0323016
Reference: [18] Lian J., Liu P.: Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis.IEEE Trans. Circuits and Systems 47 (2000), 1418–1424 Zbl 1011.94033, MR 1803664, 10.1109/81.883341
Reference: [19] Lü J., Chen G., Cheng, D., Čelikovský S.: Bridge the gap between the Lorenz system and the Chen system.Internat. J. Bifur. Chaos 12 (2002), 2917–2926 Zbl 1043.37026, MR 1956411, 10.1142/S021812740200631X
Reference: [20] Marino P., Tomei P.: Nonlinear Control Design: Geometric, Adaptive and Robust.Prentice–Hall, London 1991 Zbl 0833.93003
Reference: [21] Nijmeijer H., Shaft A. J. van der: Nonlinear Dynamical Control Systems.Springer–Verlag, New York 1990 MR 1047663
Reference: [22] Nijmeijer H.: A dynamical control view on synchronization.Phys. D 154 (2001), 219–228 Zbl 0981.34053, MR 1841062, 10.1016/S0167-2789(01)00251-2
Reference: [23] Pecora L., Carrol T.: Synchronization in chaotic systems.Phys. Rev. Lett. 64 (1990), 821–824 MR 1038263, 10.1103/PhysRevLett.64.821
Reference: [24] Pogromsky A., Santoboni, G., Nijmeijer H.: Partial Synchronization: from symmetry towards stability.Phys. D 172 (2002), 65–87 Zbl 1008.37012, MR 1942999, 10.1016/S0167-2789(02)00654-1
Reference: [25] Santoboni G., Pogromsky A. Y., Nijmeijer H.: An observer for phase synchronization of chaos.Phys. Lett. A 291 (2001), 265–273 Zbl 0977.37047, 10.1016/S0375-9601(01)00652-1
Reference: [26] Santoboni G., Pogromsky A. Y., Nijmeijer H.: Partial observer and partial synchronization.Internat. J. Bifur. Chaos 13 (2003), 453–458 MR 1972160, 10.1142/S0218127403006698
Reference: [27] Shilnikov A. L., Shilnikov L. P., Turaev D. V.: Normal forms and Lorenz attractors.Internat. J. Bifur. Chaos 3 (1993), 1123–1139 MR 1257718, 10.1142/S0218127493000933
Reference: [28] Solak E., Morgül, Ö., Ersoy U.: Observer-based control of a class of chaotic systems.Phys. Lett. A 279 (2001), 47–55 Zbl 0972.37020, 10.1016/S0375-9601(00)00808-2
Reference: [29] Ueta T., Chen G.: Bifurcation analysis of Chen’s equation.Internat. J. Bifur. Chaos 10 (2000), 1917–1931 MR 1787214, 10.1142/S0218127400001183
Reference: [30] Vaněček A., Čelikovský S.: Control Systems: From Linear Analysis to Synthesis of Chaos.Prentice–Hall, London 1996 Zbl 0874.93006
Reference: [31] Wang X.: Chen’s attractor – a new chaotic attractor (in Chinese).Control Theory Appl. 16 (1999), 779 MR 1741142
Reference: [32] Wiggins S.: Global Bifurcation and Chaos: Analytical Methods.Springer–Verlag, New York 1988 MR 0956468
Reference: [33] Zhong G.-Q., Tang K. S.: Circuit implementaion and synchronization of Chen’s attractor.Internat. J. Bifur. Chaos 12 (2002), 1423–1427 10.1142/S0218127402005224
.

Files

Files Size Format View
Kybernetika_40-2004-6_1.pdf 2.476Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo