Previous |  Up |  Next

Article

Title: Entropy on effect algebras with Riesz decomposition property II: MV-algebras (English)
Author: Di Nola, Antonio
Author: Dvurečenskij, Anatolij
Author: Hyčko, Marek
Author: Manara, Corrado
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 2
Year: 2005
Pages: [161]-176
Summary lang: English
.
Category: math
.
Summary: We study the entropy mainly on special effect algebras with (RDP), namely on tribes of fuzzy sets and sigma-complete MV-algebras. We generalize results from [RiMu] and [RiNe] which were known only for special tribes. (English)
Keyword: effect algebra
Keyword: Riesz decomposition property
Keyword: MV-algebra
Keyword: state
Keyword: entropy
MSC: 03B50
MSC: 03G12
MSC: 06D35
MSC: 28A20
MSC: 37B40
idZBL: Zbl 1249.03116
idMR: MR2138766
.
Date available: 2009-09-24T20:07:56Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135648
.
Related article: http://dml.cz/handle/10338.dmlcz/135647
.
Reference: [1] Butnariu D., Klement P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht 199.
Reference: [2] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property I: Basic properties.Kybernetika 41 (2005), 143–160 MR 2138765
Reference: [3] Nola A. Di, Dvurečenskij, A., Jakubík J.: Good and bad infinitesimals, and states on pseudo MV-algebras, submitte.
Reference: [4] Dvurečenskij A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups.J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 Zbl 0958.06006, MR 1738040, 10.1017/S1446788700001993
Reference: [5] Dvurečenskij A.: MV-observables and MV-algebras.J. Math. Anal. Appl. 259 (2001), 413–428 Zbl 0992.03081, MR 1842068, 10.1006/jmaa.2000.7409
Reference: [6] Dvurečenskij A.: Central elements and Cantor–Bernstein’s theorem for pseudo-effect alegbras.J. Austral. Math. Soc. 74 (2003), 121–143 MR 1948263, 10.1017/S1446788700003177
Reference: [7] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.
Reference: [8] Dvurečenskij A.: Product effect algebras.Inter. J. Theor. Phys. 41 (2002), 1827–1839 Zbl 1014.81004, MR 1944619
Reference: [9] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 200. MR 1861369
Reference: [10] Fuchs L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford – London – New York – Paris 1963 Zbl 0137.02001, MR 0171864
Reference: [11] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation.(Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 Zbl 0589.06008, MR 0845783
Reference: [12] Mundici D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras.Advan. Appl. Math. 22 (1999), 227–248 Zbl 0926.06004, MR 1659410, 10.1006/aama.1998.0631
Reference: [13] Riečan B.: Kolmogorov–Sinaj entropy on MV-algebras, submitte.
Reference: [14] Riečan B., Mundici D.: Probability on MV-algebras.In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 Zbl 1017.28002, MR 1954631
Reference: [15] Riečan B., Neubrunn T.: Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 199. MR 1489521
.

Files

Files Size Format View
Kybernetika_41-2005-2_5.pdf 2.054Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo