Previous |  Up |  Next

Article

Title: Software cost estimation with fuzzy inputs: Fuzzy modelling and aggregation of cost drivers (English)
Author: Sicilia, Miguel-Ángel
Author: Cuadrado-Gallego, Juan-J.
Author: Crespo, Javier
Author: García-Bariocanal, Elena
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 2
Year: 2005
Pages: [249]-264
Summary lang: English
.
Category: math
.
Summary: Parametric software cost estimation models are well-known and widely used estimation tools, and several fuzzy extensions have been proposed to introduce a explicit handling of imprecision and uncertainty as part of them. Nonetheless, such extensions do not consider two basic facts that affect the inputs of software cost parametric models: cost drivers are often expressed through vague linguistic categories, and in many cases cost drivers are better expressed in terms of aggregations of second-level drivers. In this paper, fuzzy set elicitation techniques are used as a tool to model vague categories expressing cost driver quantities, focusing on two well-known COCOMO cost drivers. The results clearly indicate that such fuzzy set modelling approach affects significantly the estimation outcomes. In addition, the empirical adjustment of the DOCU cost driver as an aggregation of second-level documentation artifact measures is used to illustrate the modelling of flexible aggregation in the context of parametric estimation. Fuzzy set elicitation and aggregation operator modelling combined provide a novel approach to extending fuzzy parametric models for software estimation, which can be used as a complement to existing approaches. (English)
Keyword: software cost estimation
Keyword: fuzzy set
Keyword: elicitation
Keyword: aggregation operator design
MSC: 03B52
MSC: 28E10
MSC: 47S40
MSC: 68T37
MSC: 68U35
idZBL: Zbl 1249.68315
.
Date available: 2009-09-24T20:08:36Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135653
.
Reference: [1] Bilgiç T., Türksen T.: Measurement of Membership Functions: Theoretical and Empirical Work.In: Handbook of Fuzzy Sets and Systems (D. Dubois and H. Prade, eds.), Vol. 1, Chapter 3, Fundamentals of Fuzzy Sets, Kluwer 1999, pp. 195–232
Reference: [2] Boehm B. W.: Software Engineering Economics.Prentice–Hall, Englewood Cliffs, NJ 1981 Zbl 0525.90034
Reference: [3] Boehm B., Abts, C., Chulani S.: Software Development Cost Estimation Approaches – A Survey.Technical Report USC-CSE-2000-505, Center for Software Engineering, University of California 2000 Zbl 1012.68568
Reference: [4] Chulani S., Clark B., Boehm, B., Steece B.: Calibration approach and results of the COCOMO II post – architecture model.In: Proc. 20th Annual Conference of the International Society of Parametric Analysts (ISPA) and 8th Annual Conference of the Society of Cost Estimating and Analysis (SCEA), 1998
Reference: [5] Crespo J. J., Sicilia M. A., Cuadrado J. J.: On fuzzy regression in software cost estimation models.In: Proc. 2003 ACM–IEEE Internat. Symposium on Empirical Software Engineering (ISESE’03)
Reference: [6] Crespo J. J., Sicilia M. A., Cuadrado J. J.: On the use of fuzzy regression in parametric software estimation models: Integrating imprecision in COCOMO cost drivers.WSEAS Trans. on Systems 1 (2004), 3, 96–101
Reference: [7] Crespo J. J., Sicilia M. A., Cuadrado J. J.: On aggregating second-level software estimation cost drivers: A usability cost estimation case study.In: Proc. Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU04)
Reference: [8] Cuadrado-Gallego J. J., Marbán O., Amescua A., García, L., Sánchez M.: The importance of rating level selection method to obtain accury estimations in parametric mathematical models.J. Cost Analysis and Management, Summer (2004), 14–20 10.1080/15411656.2004.10462245
Reference: [9] Dolado J. J.: On the problem of the software cost function.Information & Software Technology 43 (2001), 1, 61–72 10.1016/S0950-5849(00)00137-3
Reference: [11] Ghahramani B.: Software reliability analysis: a systems development model.Computers & Industrial Engrg. 45 (2003), (2), 295–305 10.1016/S0360-8352(03)00037-8
Reference: [12] Idri A., Abran, A., Khoshgoftaar T. M.: Fuzzy analogy: A new approach for software cost estimation.In: Current Trends in Software Measurement (Dumke and Abran, eds.), Shaker Publ., Aachen 2001, pp. 127–142
Reference: [13] Izyumov B., Kalinina, E., Wagenknecht M.: Software tools for regression analysis of fuzzy data.In: Proc. 9th Zittau Fuzzy Colloquium, Zittau 2001, pp. 221–229
Reference: [14] Kalinina E., Wagenknecht M.: Fuzzy regression analysis and application to a crisp model.In: Proc. 8th Zittau Fuzzy Colloquium, Zittau 2000, pp. 9–18
Reference: [15] McCall J. A., Richards P. K., Walters G. F.: Factors in Software Quality, Vol.1–3. AD/A 049-014/015/055. Springfield 1977, VA: National Technical Information Service
Reference: [16] Musilek P., Pedrycz W., Succi, G., Reformat M.: Software cost estimation with fuzzy models.Appl. Comput. Rev. 8 (2000), 2, 24–29 10.1145/373975.373984
Reference: [18] Palomar D., Sicilia M. A.: Web page usability analysis based on vague perceptual concepts.In: Proc. IADIS WWW Conference 2004, to appear
Reference: [19] Rosch E.: Principles of Categorization.Readings in Cognitive Science, Erlbaum 1988, pp. 312–322
Reference: [20] Sicilia M. A., García, E., Calvo T.: An enquiry-based method for Choquet integral-based aggregation of interface sability parameters.Kybernetika 39 (2003), 601–614 MR 2042343
Reference: [21] Jr. O. Souza Lima, Farias P. P. M., Belchior A. D.: Fuzzy function point analysis.In: Proc. 4th European Conference on Software Measurement and ICT Control, Heidelberg 2001, pp. 161–172
Reference: [22] Welie M. Van, Veer G. C. van der, Eliëns A.: Breaking down usability.In: Proc. of Interact’99, pp. 613–620
Reference: [23] Xu Z., Taghi T. M., Khoshgoftaar M.: Identification of fuzzy models of software cost estimation.Fuzzy Sets and Systems 145 (2004), 1, 141–163 MR 2061944
.

Files

Files Size Format View
Kybernetika_41-2005-2_10.pdf 2.520Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo