Full entry |
PDF
(1.7 MB)
Feedback

testing statistical hypothesis; locally most powerful tests

References:

[1] Brown L. D., Marden J. M.: **Local admissibility and local unbiasedness in hypothesis testing problems**. Ann. Statist. 20 (1992), 832–852 DOI 10.1214/aos/1176348659 | MR 1165595 | Zbl 0767.62006

[2] Chibisov D. M.: **Asymptotic expansions for some asymptotically pptimal tests**. In: Proc. Prague Symp. on Asymptotic Statistics, Volume II (J. Hájek, ed.), Charles University, Prague 1973, pp. 37–68 MR 0400501

[3] Efron B.: **Defining the curvature of a statistical problem (with application to second order efficiency)**. Ann. Statist. 3 (1975), 1189–1242 DOI 10.1214/aos/1176343282 | MR 0428531

[4] Gupta A. S., Vermeire L.: **Locally optimal tests for multiparameter hypotheses**. J. Amer. Statist. Assoc. 81 (1986), 819–825 DOI 10.1080/01621459.1986.10478340 | MR 0860517 | Zbl 0635.62020

[5] Isaacson S. L.: **On the theory of unbiased tests of simple statistical hypothesis specifying the values of two or more parameters**. Ann. Math. Statist. 22 (1951), 217–234 DOI 10.1214/aoms/1177729642 | MR 0041401

[6] Jurečková J.: **$L_1$-derivatives, score function and tests**. In: Statistical Data Analysis Based on the $L_1$-Norm and Related Methods (Y. Dodge, ed.), Birkhäuser, Basel 2002, pp. 183–189

[7] Kallenberg W. C. M.: **The shortcomming of locally most powerful test in curved exponential families**. Ann. Statist. 9 (1981), 673–677 DOI 10.1214/aos/1176345472 | MR 0615444

[8] Lehmann E. L.: **Testing Statistical Hypothesis**. Second edition. Chapman & Hall, New York 1994

[9] Littel R. C., Folks J. L.: **A test of equality of two normal population means and variances**. J. Amer. Statist. Assoc. 71 (1976), 968–971 DOI 10.1080/01621459.1976.10480978 | MR 0420945

[10] Peers H. W.: **Likelihood ratio and associated test criteria**. Biometrika 58 (1971), 577–587 DOI 10.1093/biomet/58.3.577 | Zbl 0245.62026

[11] Ramsey F. L.: **Small sample power functions for nonparametric tests of location in the double exponential family**. J. Amer. Statist. Assoc. 66 (1971), 149–151 DOI 10.1080/01621459.1971.10482236 | Zbl 0215.26402

[12] Witting H.: **Mathematische Statistik I**. Teubner–Verlag, Stuttgart 1985 MR 0943833 | Zbl 0581.62001

[13] Wong P. G., Wong S. P.: **A curtailed test for the shape parameter of the Weibull distribution**. Metrika 29 (1982), 203–209 DOI 10.1007/BF01893380 | MR 0685566 | Zbl 0492.62022