Full entry |
PDF
(1.7 MB)
Feedback

stochastically ordered Markov chains; Lyapunov condition; invariant probability; average Markov decision processes

References:

[1] Favero F., Runglandier W. J.: **A robustness result for stochastic control**. Systems Control Lett. 46 (2002), 91–97 DOI 10.1016/S0167-6911(02)00121-4 | MR 2010062

[2] Gordienko E. I.: **An estimate of the stability of optimal control of certain stochastic and deterministic systems**. J. Soviet Math. 50 (1992), 891–899 DOI 10.1007/BF01099115 | MR 1163393

[3] Gordienko E. I.: **Lecture Notes on Stability Estimation in Markov Decision Processes**. Universidad Autónoma Metropolitana, México D.F., 1994

[4] Gordienko E. I., Hernández-Lerma O.: **Average cost Markov control processes with weighted norms: value iteration**. Appl. Math. 23 (1995), 219–237 MR 1341224 | Zbl 0829.93068

[5] Gordienko E. I., Salem-Silva F. S.: **Robustness inequality for Markov control processes with unbounded costs**. Systems Control Lett. 33 (1998), 125–130 DOI 10.1016/S0167-6911(97)00077-7 | MR 1607814

[6] Gordienko E. I., Salem-Silva F. S.: **Estimates of stability of Markov control processes with unbounded costs**. Kybernetika 36 (2000), 2, 195–210 MR 1760024

[7] Hernández-Lerma O.: **Adaptive Markov Control Processes**. Springer–Verlag, New York 1989 MR 0995463

[8] Hernández-Lerma O., Lasserre J. B.: **Further Topics on Discrete-Time Markov Control Processes**. Springer–Verlag, New York 1999 MR 1697198 | Zbl 0928.93002

[9] Hinderer K.: **Foundations of Non-stationary Dynamic Programming with Discrete Time Parameter**. (Lectures Notes in Operations Research and Mathematical Systems 33.) Springer–Verlag, Berlin – Heidelberg – New York 1970 MR 0267890 | Zbl 0202.18401

[10] Lindvall T.: **Lectures on the Coupling Method**. (Wiley Series in Probability and Mathematical Statistics.) Wiley, New York 1992 MR 1180522 | Zbl 1013.60001

[11] Lund R.: **The geometric convergence rates of a Lindley random walk**. J. Appl. Probab. 34 (1997), 806–811 DOI 10.2307/3215107 | MR 1464616

[12] Lund R., Tweedie R.: **Geometric convergence rates for stochastically ordered Markov chains**. Math. Oper. Res. 20 (1996), 182–194 DOI 10.1287/moor.21.1.182 | MR 1385873 | Zbl 0847.60053

[13] Meyn S., Tweedie R.: **Markov Chains and Stochastic Stability**. Springer–Verlag, New York 1993 MR 1287609 | Zbl 1165.60001

[14] Montes-de-Oca R., Sakhanenko, A., Salem-Silva F.: **Estimates for perturbations of general discounted Markov control chains**. Appl. Math. 30 (2003), 3, 287–304 MR 2029538 | Zbl 1055.90086

[15] Nummelin E.: **General Irreducible Markov Chains and Non-negative Operators**. Cambrigde University Press, Cambridge 1984 MR 0776608 | Zbl 0551.60066

[16] Rachev S. T.: **Probability Metrics and the Stability of Stochastic Models**. Wiley, New York 1991 MR 1105086 | Zbl 0744.60004

[17] Zolotarev V. M.: **On stochastic continuity of queueing systems of type G/G/1**. Theory Probab. Appl. 21 (1976), 250–269 MR 0420920 | Zbl 0363.60090