Previous |  Up |  Next

Article

Title: Hazard rate model and statistical analysis of a compound point process (English)
Author: Volf, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 6
Year: 2005
Pages: [773]-786
Summary lang: English
.
Category: math
.
Summary: A stochastic process cumulating random increments at random moments is studied. We model it as a two-dimensional random point process and study advantages of such an approach. First, a rather general model allowing for the dependence of both components mutually as well as on covariates is formulated, then the case where the increments depend on time is analyzed with the aid of the multiplicative hazard regression model. Special attention is devoted to the problem of prediction of process behaviour. To this end, certain results on risk processes and crossing probabilities are recalled and utilized. The application deals with the process of financial transactions and the problem of detection of outlied trajectories. (English)
Keyword: counting process
Keyword: compound process
Keyword: Cox regression model
Keyword: financial series
Keyword: intensity
Keyword: prediction
MSC: 60G55
MSC: 62G05
MSC: 62M09
MSC: 62M99
MSC: 62N99
idZBL: Zbl 1245.62123
idMR: MR2193865
.
Date available: 2009-09-24T20:13:09Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135692
.
Reference: [1] Andersen P. K., Borgan O., Gill R. D., Keiding M.: Statistical Models Based on Counting Processes.Springer, New York 1993 Zbl 0824.60003, MR 1198884
Reference: [2] Arjas E.: A graphical method for assessing goodness of fit in Cox’s proportional hazards model.J. Amer. Statist. Assoc. 83 (1988), 204–212 10.1080/01621459.1988.10478588
Reference: [3] Asmussen S.: Ruin Probabilities.World Scientific, Singapore 2000 Zbl 1229.91151, MR 1794582
Reference: [4] Brémaud P.: Point Processes and Queues: Martingale Dynamics.Springer, Berlin 1981 Zbl 0478.60004, MR 0636252
Reference: [5] Embrechts P., Klüppelberg, K., Mikosch T.: Modeling Extremal Events.Springer, Berlin 1997 MR 1458613
Reference: [6] Hastie T. J., Tibshirani R. J.: Generalized Additive Models.Wiley, New York 1990 Zbl 0747.62061, MR 1082147
Reference: [7] Jacod J., Shirjajev A. N.: Limit Theorems for Stochastic Processes.Springer, Berlin 2003 MR 1943877
Reference: [8] Kooperberg C., Stone C. J., Truong Y. K.: The $L_2$ rate of convergence for hazard regression.Scand. J. Statist. 22 (1995), 143–157 MR 1339748
Reference: [9] Marzec L., Marzec P.: Generalized martingale-residual processes for goodness-of-fit inference in Cox’s type regression model.Ann. Statist. 25 (1997), 683–714 MR 1439319, 10.1214/aos/1031833669
Reference: [10] McKeague I. W., Utikal K. J.: Inference for a nonlinear counting regression model.Ann. Statist. 18 (1990), 1172–1187 MR 1062704, 10.1214/aos/1176347745
Reference: [11] McKeague I. W., Utikal K. J.: Goodness-of-fit tests for additive hazard and proportional hazard models.Scand. J. Statist. 18 (1991), 177–195 MR 1146176
Reference: [12] Rolski T., Schmidli H., Schmidt, V., Teugels J.: Stochastic Processes for Insurance and Finance.Wiley, New York 1999 Zbl 1152.60006, MR 1680267
Reference: [13] Stone C. J.: The use of polynomial splines and their tensor products in multivariate function estimation.With discussion. Ann. Statist. 22 (1994), 118–184 Zbl 0827.62038, MR 1272079, 10.1214/aos/1176325361
Reference: [14] Volf P.: A nonparametric analysis of proportional hazard regression model.Problems Control Inform. Theory 18 (1989), 311–322 Zbl 0698.62039, MR 1025942
Reference: [15] Volf P.: Analysis of generalized residuals in hazard regression models.Kybernetika 32 (1993), 501–510 MR 1420139
Reference: [16] Volf P.: On cumulative process model and its statistical analysis.Kybernetika 36 (2000), 165–176 MR 1760023
.

Files

Files Size Format View
Kybernetika_41-2005-6_7.pdf 2.242Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo