Full entry |
PDF
(0.9 MB)
Feedback

free lunch; free lunch in the limit; fundamental theorem of asset pricing; incomplete markets; arbitrage pricing; multistage stochastic programming; conjugate duality; finitely-additive measures

References:

[1] Castaing C., Valadier M.: **Convex Analysis and Measurable Multifunctions**. (Lecture Notes in Mathematics 580.) Springer–Verlag, Berlin 1977 DOI 10.1007/BFb0087688 | MR 0467310 | Zbl 0346.46038

[2] Delbaen F., Schachermayer W.: **A general version of the fundamental theorem of asset pricing**. Math. Ann. 300 (1994), 463–520 DOI 10.1007/BF01450498 | MR 1304434 | Zbl 0865.90014

[3] Dybvig P. H., Ross S. A.: **Arbitrage**. In: A Dictionary of Economics, Vol. 1 (J. Eatwell, M. Milgate, and P. Newman, eds.), Macmillan Press, London 1987, pp. 100–106

[4] Eisner M. J., Olsen P.: **Duality for stochastic programs interpreted as L**. P. in $L_p$-space. SIAM J. Appl. Math. 28 (1975), 779–792 DOI 10.1137/0128064 | MR 0368742

[5] Föllmer H., Schied A.: **Stochastic Finance**. An Introduction in Discrete Time. Walter de Gruyter, Berlin 2002 MR 1925197 | Zbl 1126.91028

[6] Henclová A.: **Characterization of arbitrage-free market**. Bulletin Czech Econom. Soc. 10 (2003), No. 19, 109–117

[7] Hewitt E., Stromberg K.: **Real and Abstract Analysis**. Third edition. Springer Verlag, Berlin 1975 MR 0367121 | Zbl 0307.28001

[8] King A.: **Duality and martingales: A stochastic programming perspective on contingent claims**. Math. Programming, Ser. B 91 (2002), 543–562 DOI 10.1007/s101070100257 | MR 1888991 | Zbl 1074.91018

[9] King A., Korf L.: **Martingale pricing measures in incomplete markets via stochastic programming duality in the dual of $L^\infty $**. SPEPS, 2001–13 (available at http://dochost.rz.hu-berlin.de/speps)

[10] Naik V.: **Finite state securities market models and arbitrage**. In: Handbooks in Operations Research and Management Science, Vol. 9, Finance (R. Jarrow, V. Maksimovic, and W. Ziemba, eds.), Elsevier, Amsterdam 1995, pp. 31–64

[11] Pennanen T., King A.: **Arbitrage pricing of American contingent claims in incomplete markets – a convex optimization approach**. SPEPS, 2004–14 (available at http://dochost.rz.hu-berlin.de/speps)

[12] Pliska S. R.: **Introduction to Mathematical Finance, Discrete Time Models**. Blackwell Publishers, Oxford 1999

[13] Rockafellar R. T.: **Conjugate Duality and Optimization**. SIAM/CBMS monograph series No. 16, SIAM Publications, Philadelphia 1974 MR 0373611 | Zbl 0296.90036

[14] Rockafellar R. T., Wets R. J.-B.: **Nonanticipativity and $Ł^1$-martingales in stochastic optimization problems**. Math. Programming Stud. 6 (1976), 170–187 DOI 10.1007/BFb0120750 | MR 0462590

[15] Rockafellar R. T., Wets R. J.-B.: **Stochastic convex programming: Basic duality**. Pacific J. Math. 62 (1976), 173–195 DOI 10.2140/pjm.1976.62.173 | MR 0416582 | Zbl 0339.90048

[16] Rockafellar R. T., Wets R. J.-B.: **Stochastic convex programming: Singular multipliers and extended duality**. Pacific J. Math. 62 (1976), 507–522 DOI 10.2140/pjm.1976.62.173 | MR 0489880 | Zbl 0346.90057

[17] Rockafellar R. T., Wets R. J.-B.: **Stochastic convex programming: Relatively complete recourse and induced feasibility**. SIAM J. Control Optim. 14 (1976), 574–589 DOI 10.1137/0314038 | MR 0408823 | Zbl 0346.90058