Previous |  Up |  Next

Article

Title: Extremes of spheroid shape factor based on two dimensional profiles (English)
Author: Hlubinka, Daniel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 1
Year: 2006
Pages: 77-94
Summary lang: English
.
Category: math
.
Summary: The extremal shape factor of spheroidal particles is studied. Three dimensional particles are considered to be observed via their two dimensional profiles and the problem is to predict the extremal shape factor in a given size class. We proof the stability of the domain of attraction of the spheroid’s and its profile shape factor under a tail equivalence condition. We show namely that the Farlie–Gumbel–Morgenstern bivariate distributions gives the tail uniformity. We provide a way how to find normalising constants for the shape factor extremes. The theory is illustrated on examples of distributions belonging to Gumbel and Fréchet domain of attraction. We discuss the ML estimator based on the largest observations and hence the possible statistical applications at the end. (English)
Keyword: sample extremes
Keyword: domain of attraction
Keyword: normalising constants
Keyword: FGM system of distributions
MSC: 60G70
MSC: 62G32
MSC: 62P30
idZBL: Zbl 1249.60105
idMR: MR2208521
.
Date available: 2009-09-24T20:14:08Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135700
.
Reference: [1] Beneš V., Bodlák, K., Hlubinka D.: Stereology of extremes; FGM bivariate distributions.Method. Comput. Appl. Probab. 5 (2003), 289–308 MR 2016768, 10.1023/A:1026283103180
Reference: [2] Beneš V., Jiruše, M., Slámová M.: Stereological unfolding of the trivariate size-shape-orientation distribution of spheroidal particles with application.Acta Materialia 45 (1997), 1105–1197 10.1016/S1359-6454(96)00249-2
Reference: [3] Cruz-Orive L.-M.: Particle size-shape distributions; the general spheroid problem.J. Microsc. 107 (1976), 235–253 10.1111/j.1365-2818.1976.tb02446.x
Reference: [4] Drees H., Reiss R.-D.: Tail behavior in Wicksell’s corpuscle problem.In: Probability Theory and Applications (J. Galambos and J. Kátai, eds.), Kluwer, Dordrecht 1992, pp. 205–220 MR 1211909
Reference: [5] Embrechts P., Klüppelberg, C., Mikosch T.: Modelling Extremal Events for Insurance and Finance.Springer–Verlag, Berlin 1997 Zbl 0873.62116, MR 1458613
Reference: [6] Haan L. de: On Regular Variation and Its Application to the Weak Convergence of Sample Extremes.(Mathematical Centre Tract 32.) Mathematisch Centrum Amsterdam, 1975 Zbl 0226.60039, MR 0286156
Reference: [7] Hlubinka D.: Stereology of extremes; shape factor of spheroids.Extremes 5 (2003), 5–24 Zbl 1051.60011, MR 2021590, 10.1023/A:1026234329084
Reference: [8] Hlubinka D.: Stereology of extremes; size of spheroids.Mathematica Bohemica 128 (2003), 419–438 Zbl 1053.60053, MR 2032479
Reference: [9] Ohser J., Mücklich F.: Statistical Analysis of Microstructures in Materials Science.Wiley, New York 2000 Zbl 0960.62129
Reference: [10] Reiss R.-D.: A Course on Point Processes.Springer–Verlag, Berlin 1993 Zbl 0771.60037, MR 1199815
Reference: [11] Reiss R.-D., Thomas M.: Statistical Analysis of Extreme Values.From Insurance, Finance, Hydrology and Other Fields. Second edition. Birkhäuser, Basel 2001 Zbl 1122.62036, MR 1819648
Reference: [12] Takahashi R.: Normalizing constants of a distribution which belongs to the domain of attraction of the Gumbel distribution.Statist. Probab. Lett. 5 (1987), 197–200 Zbl 0617.62050, MR 0881196, 10.1016/0167-7152(87)90039-3
Reference: [13] Takahashi R., Sibuya M.: The maximum size of the planar sections of random spheres and its application to metalurgy.Ann. Inst. Statist. Math. 48 (1996), 127–144 MR 1392521, 10.1007/BF00049294
Reference: [14] Takahashi R., Sibuya M.: Prediction of the maximum size in Wicksell’s corpuscle problem.Ann. Inst. Statist. Math. 50 (1998), 361–377 Zbl 0986.62075, MR 1868939, 10.1023/A:1003451417655
Reference: [15] Takahashi R., Sibuya M.: Prediction of the maximum size in Wicksell’s corpuscle problem.II. Ann. Inst. Statist. Math. 53 (2001), 647–660 Zbl 1078.62525, MR 1868897, 10.1023/A:1014697919230
Reference: [16] Takahashi R., Sibuya M.: Maximum size prediction in Wicksell’s corpuscle problem for the exponential tail data.Extremes 5 (2002), 55–70 Zbl 1037.62098, MR 1947788, 10.1023/A:1020982025786
Reference: [17] Weissman I.: Estimation of parameters and large quantiles based on the $k$ largest observations.J. Amer. Statist. Assoc. 73 (1978), 812–815 Zbl 0397.62034, MR 0521329
.

Files

Files Size Format View
Kybernetika_42-2006-1_4.pdf 867.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo