Previous |  Up |  Next

Article

Title: Reaching phase elimination in variable structure control of the third order system with state constraints (English)
Author: Bartoszewicz, A.
Author: Nowacka, A.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 1
Year: 2006
Pages: 111-126
Summary lang: English
.
Category: math
.
Summary: In this paper the design of a time varying switching plane for the sliding mode control of the third order system subject to the velocity and acceleration constraints is considered. Initially the plane passes through the system representative point in the error state space and then it moves with a constant velocity to the origin of the space. Having reached the origin the plane stops and remains motionless. The plane parameters (determining angles of inclination and the velocity of its motion) are selected to ensure the minimum integral absolute error without violating velocity and acceleration constraints. The optimal parameters of the plane for the system subject to the acceleration constraint are derived analytically, and it is strictly proved that when both the system velocity and acceleration are limited, the optimal parameters can be easily found using any standard numerical procedure for solving nonlinear equations. The equation to be solved is derived and the starting points for the numerical procedure are given. (English)
Keyword: variable structure systems
Keyword: sliding mode control
Keyword: switching plane design
MSC: 93A30
MSC: 93B12
MSC: 93B40
MSC: 93B50
MSC: 93C10
idZBL: Zbl 1249.93025
idMR: MR2208523
.
Date available: 2009-09-24T20:14:23Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135702
.
Reference: [1] Bartoszewicz A.: A comment on ‘A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems’.Automatica 31 (1995), 1893–1895 Zbl 0850.93147, MR 1364694, 10.1016/0005-1098(95)00122-1
Reference: [2] Bartoszewicz A.: Time-varying sliding modes for second-order systems.Proc. IEE-D Control Theory and Applications 143 (1996), 455–462 Zbl 0867.93020
Reference: [3] Choi S. B., Cheong C. C., Park D. W.: Moving switching surfaces for robust control of second-order variable structure systems.Internat. J. Control 58 (1993), 229–245 Zbl 0777.93012, MR 1222145, 10.1080/00207179308922999
Reference: [4] Choi S. B., Park D. W.: Moving sliding surfaces for fast tracking control of second-order dynamic systems.Trans. ASME J. Dynamic Systems Measurement and Control 116 (1994), 154–158 10.1115/1.2900671
Reference: [5] Choi S. B., Park D. W., Jayasuriya S.: A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems.Automatica 30 (1994), 899–904 Zbl 0800.93202, MR 1276540, 10.1016/0005-1098(94)90180-5
Reference: [6] DeCarlo R. S., Żak, S., Mathews G.: Variable structure control of nonlinear multivariable systems: a tutorial.Proc. IEEE 76 (1988), 212–232
Reference: [7] Hung J. Y., Gao, W., Hung J. C.: Variable structure control: a survey.IEEE Trans. Industrial Electronics 40 (1993), 2–22 10.1109/41.184817
Reference: [8] Slotine J. J., Li W.: Applied Nonlinear Control.Prentice–Hall, Englewood Cliffs, NJ 1991 Zbl 0753.93036
Reference: [9] Tokat S., Eksin, I., Gűzelkaya M.: A new design method for sliding mode controllers using a linear time-varying sliding surface.Proc. Inst. Mechanical Engineers – Part I 216 (2002), 455–466
Reference: [10] Tokat S., Eksin I., Gűzelkaya, M., Sőylemez M. T.: Design of a sliding mode controller with a nonlinear time-varying sliding surface.Trans. Inst. of Measurement and Control 25 (2003), 145–162 10.1191/0142331203tm079oa
Reference: [11] Utkin V.: Variable structure systems with sliding modes.IEEE Trans. Automat. Control 22 (1977), 212–222 Zbl 0382.93036, MR 0484664, 10.1109/TAC.1977.1101446
.

Files

Files Size Format View
Kybernetika_42-2006-1_6.pdf 909.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo