Previous |  Up |  Next

Article

Keywords:
semi-simple MV-algebra; conditional distribution; joint distribution
Summary:
In this paper we construct conditional states on semi-simple MV-algebras. We show that these conditional states are not given uniquely. By using them we construct the joint probability distributions and discuss the properties of these distributions. We show that the independence is not symmetric.
References:
[1] Beltrametti E., Cassinelli G.: The logic of quantum mechanics. Addison–Wesley, Reading, Mass. 1981 MR 0635780 | Zbl 0595.03062
[2] Chang C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[3] Chang C. C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80 MR 0122718 | Zbl 0093.01104
[4] Chovanec F.: States and observables on MV-algebras. Tatra Mountains Math. Publ. 3 (1993), 55–63 MR 1278519 | Zbl 0799.03074
[5] Gudder S. P.: An approach to quantum probability. In: Proc. Conf. Foundations of Probability and Physics (A. Khrennikov, ed.), Q. Prob. White Noise Anal. 13 (2001), WSP, Singapure, pp. 147–160 MR 2089679
[6] Jurečková M., Riečan B.: Weak law of large numbers for weak observables in MV algebras. Tatra Mountains Math. Publ. 12 (1997), 221–228 MR 1607146 | Zbl 0960.03052
[7] Khrennikov A. Yu.: Contextual viewpoint to quantum stochastics. J. Math. Phys. 44 (2003), 2471–2478 DOI 10.1063/1.1570952 | MR 1979096 | Zbl 1062.81004
[8] Khrennikov A. Yu.: Representation of the Kolmogorov model having all distinguishing features of quantum probabilistic model. Phys. Lett. A 316 (2003), 279–296 DOI 10.1016/j.physleta.2003.07.006 | MR 2029589 | Zbl 1031.81012
[9] Kolmogorov A. N.: Grundbegriffe der Wahrscheikchkeitsrechnung. Springer–Verlag, Berlin 1933
[10] Kolmogorov A. N.: The Theory of Probability. In: Mathematics, Its Content, Methods, and Meaning 2 (A. D. Alexandrov, A. N. Kolmogorov, and M. A. Lavrent‘ev, eds.), M.I.T. Press, Cambridge, Mass. 1965 Zbl 1073.60003
[11] Montagna F.: An algebraic approach to propositional fuzzy logic. J. Logic. Lang. Inf. 9 (2000), 91–124 DOI 10.1023/A:1008322226835 | MR 1749775 | Zbl 0942.06006
[12] Nánásiová O.: On conditional probabilities on quantum logic. Internat. J. Theoret. Phys. 25 (1987), 155–162
[13] Nánásiová O.: States and homomorphism on the Pták sum. Internat. J. Theoret. Phys. 32 (1993), 1957–1964 DOI 10.1007/BF00979517 | MR 1255398
[14] Nánásiová O.: A note on the independent events on a quantum logic. Busefal 76 (1998), 53–57
[15] Nánásiová O.: Representation of conditional probability on a quantum logic. Soft Comp. 4 (2000), 36–40 DOI 10.1007/s005000050079 | Zbl 1005.03050
[16] Nánásiová O.: Map for simultaneous measurements for a quantum logic. Internat. J Theoret. Phys. 42 (2003) 1889–1903 DOI 10.1023/A:1027384132753 | MR 2023910 | Zbl 1053.81006
[17] Nánásiová O.: Principle conditioning. Internat. J. Theoret. Phys. 43 (2004), 7, 1757–1767 DOI 10.1023/B:IJTP.0000048818.23615.28 | MR 2108309 | Zbl 1074.81006
[18] Pták P., Pulmannová S.: Quantum Logics. Kluwer Acad. Press, Bratislava 1991 MR 1176314 | Zbl 1151.81003
[19] Riečan B.: On the sum of observables in MV algebras of fuzzy sets. Tatra Mountains Math. Publ. 14 (1998), 225–232 MR 1651215 | Zbl 0940.03070
[20] Riečan B.: On the strong law of large numbers for weak observables in MV algebras. Tatra Mountains Math. Publ. 15 (1998), 13–21 MR 1655075
[21] Riečan B.: Weak observables in MV algebras. Internat. J. Theoret. Phys. 37 (1998), 183–189 DOI 10.1023/A:1026689912149 | MR 1637164 | Zbl 0908.03058
[22] Riečan B.: On the product MV algebras. Tatra Mountains Math. Publ. 16 (1999), 143–149 MR 1725292 | Zbl 0951.06013
[23] Riečan B., Mundici D.: Probability on MV-Algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 869–909 MR 1954631 | Zbl 1017.28002
[24] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer, Dordrecht and Ister Science, Bratislava 1997 MR 1489521 | Zbl 0916.28001
[25] Varadarajan V.: Geometry of Quantum Theory. D. Van Nostrand, Princeton, New Jersey 1968 MR 0471674 | Zbl 0581.46061
Partner of
EuDML logo