Previous |  Up |  Next

Article

Title: Archimedean atomic lattice effect algebras in which all sharp elements are central (English)
Author: Riečanová, Zdenka
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 2
Year: 2006
Pages: 143-150
Summary lang: English
.
Category: math
.
Summary: We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it. (English)
Keyword: lattice effect algebra
Keyword: sharp and central element
Keyword: block
Keyword: state
Keyword: subdirect decomposition
Keyword: MacNeille completion
MSC: 03G10
MSC: 03G12
MSC: 03G25
MSC: 06D35
MSC: 81P10
idZBL: Zbl 1249.03121
idMR: MR2241781
.
Date available: 2009-09-24T20:14:48Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135705
.
Reference: [1] Chang C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490 Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 2000 MR 1861369
Reference: [3] Foulis D., Bennett M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1331–1352 MR 1304942, 10.1007/BF02283036
Reference: [4] Greechie R. J.: Orthomodular lattices admitting no states.J. Combin. Theory Ser. A 10 (1971), 119–132 Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [5] Greechie R. J., Foulis, D., Pulmannová S.: The center of an effect algebra.Order 12 (1995), 91–106 Zbl 0846.03031, MR 1336539, 10.1007/BF01108592
Reference: [6] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras.BUSEFAL 80 (1999), 24–29
Reference: [7] Kôpka F., Chovanec F.: $D$-posets.Math. Slovaca 44 (1994), 21–34 Zbl 0789.03048, MR 1290269
Reference: [8] Riečanová Z.: MacNeille completions of $D$-posets and effect algebras.Internat. J. Theor. Phys. 39 (2000), 859–869 Zbl 0967.06008, MR 1792204, 10.1023/A:1003683014627
Reference: [9] Riečanová Z.: Generalization of blocks for $D$-lattices and lattice ordered effect algebras.Internat. J. Theor. Phys. 39 (2000), 231–237 Zbl 0968.81003, MR 1762594, 10.1023/A:1003619806024
Reference: [10] Riečanová Z.: Archimedean and block-finite lattice effect algebras.Demonstratio Math. 33 (2000), 443–452 MR 1791464
Reference: [11] Riečanová Z.: Orthogonal sets in effect algebras.Demonstratio Math. 34 (2001), 3, 525–532 MR 1853730
Reference: [12] Riečanová Z.: Proper effect algebras admitting no states.Internat. J. Theor. Phys. 40 40 (2001), 1683–1691 Zbl 0989.81003, MR 1858217, 10.1023/A:1011911512416
Reference: [13] Riečanová Z.: Smearings of states defined on sharp elements onto effect algebras.Internat. J. Theor. Phys. 41 (2002), 1511–1524 MR 1932844, 10.1023/A:1020136531601
Reference: [14] Riečanová Z.: Continuous effect algebra admitting order-continuous states.Fuzzy Sets and Systems 136 (2003), 41–54 MR 1978468, 10.1016/S0165-0114(02)00141-0
Reference: [15] Riečanová Z.: Distributive atomic effect algebras.Demonstratio Math. 36 (2003), 247–259 MR 1984337
Reference: [16] Riečanová Z.: Subdirect decompositions of lattice effect algebras.Internat. J. Theor. Phys. 42 (2003), 1425–1433 MR 2021221, 10.1023/A:1025775827938
Reference: [17] Riečanová Z.: Modular atomic effect algebras and the existence of subadditive states.Kybernetika 40 (2004), 459–468 MR 2102364
Reference: [18] Schmidt J.: Zur Kennzeichnung der Dedekind–MacNeilleschen Hulle einer geordneten Menge.Arch. Math. 17 (1956), 241–249 MR 0084484, 10.1007/BF01900297
.

Files

Files Size Format View
Kybernetika_42-2006-2_2.pdf 669.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo