Title:
|
The least trimmed squares. Part III: Asymptotic normality (English) |
Author:
|
Víšek, Jan Ámos |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
42 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
203-224 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Asymptotic normality of the least trimmed squares estimator is proved under general conditions. At the end of paper a discussion of applicability of the estimator (including the discussion of algorithm for its evaluation) is offered. (English) |
Keyword:
|
robust regression |
Keyword:
|
the least trimmed squares |
Keyword:
|
$\sqrt{n}$-consistency |
Keyword:
|
asymptotic normality |
MSC:
|
62F12 |
MSC:
|
62F35 |
MSC:
|
62F40 |
MSC:
|
62J05 |
idZBL:
|
Zbl 1248.62035 |
idMR:
|
MR2241785 |
. |
Date available:
|
2009-09-24T20:15:20Z |
Last updated:
|
2015-03-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135709 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/135697 |
Related article:
|
http://dml.cz/handle/10338.dmlcz/135708 |
. |
Reference:
|
[1] Benáček V. J., Jarolím, M., Víšek J. Á.: Supply-side characteristics and the industrial structure of Czech foreign trade.In: Proc. Business and Economic Development in Central and Eastern Erupe: Implications for Economic Integration into wider Europe. Technical University in Brno and University of Wisconsin, Whitewater, and the Nottingham Trent University 1998, pp. 51–68 |
Reference:
|
[2] Boček P., Lachout P.: Linear programming approach to LMS-estimation.Comput. Statist. Data Anal. (Memorial volume) 19(1995), 129–134 Zbl 0875.62292, MR 1323269, 10.1016/0167-9473(93)E0051-5 |
Reference:
|
[3] Breiman L.: Probability.Addison–Wesley Publishing Company, London 1968 Zbl 0753.60001, MR 0229267 |
Reference:
|
[4] Chatterjee S., Hadi A. S.: Sensitivity Analysis in Linear Regression.Wiley, New York 1988 Zbl 0648.62066, MR 0939610 |
Reference:
|
[5] Čížek P.: Robust estimation with discrete explanatory variables.In: COMPSTAT 2003, pp. 509–514 MR 1986578 |
Reference:
|
[6] Čížek P., Víšek J. Á.: Least trimmed squares.In: EXPLORE, Application Guide (W. Härdle, Z. Hlavka, and S. Klinke, eds.), Springer–Verlag, Berlin 2000, pp. 49–64 |
Reference:
|
[7] Jurečková J., (1993) P. K. Sen: Regression rank scores scale statistics and studentization in linear models.In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica–Verlag, Heidelberg 1993, pp. 111–121 MR 1311932 |
Reference:
|
[8] Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A.: Robust Statistics – The Approach Based on Influence Functions.Wiley, New York 1986 Zbl 0733.62038, MR 0829458 |
Reference:
|
[9] Hawkins D. M., Olive D. J.: Improved feasible solution algorithms for breakdown estimation.Comput. Statist. Data Anal. 30 (1999), 1, 1–12 MR 1681450, 10.1016/S0167-9473(98)00082-6 |
Reference:
|
[10] Hettmansperger T. P., Sheather S. J.: A cautionary note on the method of least median squares.Amer. Statist. 46 (1992), 79–83 MR 1165565 |
Reference:
|
[11] Huber P. J.: Robust Statistics.Wiley, New York 1981 MR 0606374 |
Reference:
|
[12] Liese F., Vajda I.: Consistency of $M$-estimators in general models.J. Multivar. Anal. 50 (1994), 93–114 MR 1292610, 10.1006/jmva.1994.1036 |
Reference:
|
[13] Maronna R. A., Yohai V. J.: Asymptotic behaviour of general $M$-estimates for regression and scale with random carriers.Z. Wahrscheinlichkeitstheorie verw. Gebiete 58 (1981), 7–20 MR 0635268, 10.1007/BF00536192 |
Reference:
|
[14] Pollard D.: Asymptotics for least absolute deviation regression estimator.Econometric Theory 7 (1991), 186–199 MR 1128411, 10.1017/S0266466600004394 |
Reference:
|
[15] Portnoy S.: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Härdle, and D. Martin, eds.), Springer–Verlag, New York 1983, pp. 231–246 MR 0786311 |
Reference:
|
[16] Rousseeuw P. J., Leroy A. M.: Robust Regression and Outlier Detection.Wiley, New York 1987 Zbl 0711.62030, MR 0914792 |
Reference:
|
[17] Rubio A. M., Víšek J. Á.: Estimating the contamination level of data in the framework of linear regression analysis.Qűestiió 21 (1997), 9–36 Zbl 1167.62388, MR 1476149 |
Reference:
|
[18] Štěpán J.: Teorie pravděpodobnosti (Probability Theory).Academia, Prague 1987 |
Reference:
|
[19] Víšek J. Á.: A cautionary note on the method of Least Median of Squares reconsidered.In: Trans. Twelfth Prague Conference on Inform. Theory, Statist. Dec. Functions and Random Processes, Prague 1994, pp. 254–259 |
Reference:
|
[20] Víšek J. Á.: On high breakdown point estimation.Comput. Statistics 11 (1996), 137–146 Zbl 0933.62015, MR 1394545 |
Reference:
|
[21] Víšek J. Á.: Sensitivity analysis $M$-estimates.Ann. Inst. Statist. Math. 48 (1996), 469–495 MR 1424776, 10.1007/BF00050849 |
Reference:
|
[22] Víšek J. Á.: Diagnostics of regression subsample stability.Probab. Math. Statist. 17 (1997), 2, 231–257 Zbl 0924.62072, MR 1490803 |
Reference:
|
[23] Víšek J. Á.: Robust estimation of regression model.Bull. Czech Econometric Society 9 (1999), 57–79 |
Reference:
|
[24] Víšek J. Á.: The least trimmed squares – random carriers.Bull. Czech Econometric Society 10 (1999), 1–30 |
Reference:
|
[25] Víšek J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy.In: Proc. Macromodels’99, Rydzyna 1999,pp. 424–445 |
Reference:
|
[26] Víšek J. Á.: On the diversity of estimates.Comput. Statist. Data Anal. 34 (2000) 67–89 Zbl 1052.62509, 10.1016/S0167-9473(99)00068-7 |
Reference:
|
[27] Víšek J. Á.: Regression with high breakdown point.In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of the Czechoslovak Mathematicians and Physicists, Prague 2001, 324–356 |
Reference:
|
[28] Víšek J. Á.: Sensitivity analysis of $M$-estimates of nonlinear regression model: Influence of data subsets.Ann. Inst. Statist. Math. 54 (2002), 2, 261–290 Zbl 1013.62072, MR 1910173, 10.1023/A:1022465701229 |
Reference:
|
[29] Víšek J. Á.: The least weighted squares I.The asymptotic linearity of normal equation. Bull. Czech Econometric Society 9 (2002), 15, 31–58 |
Reference:
|
[30] Víšek J. Á.: The least weighted squares II.Consistency and asymptotic normality. Bull. Czech Econometric Society 9 (2002), 16, 1–28 |
Reference:
|
[31] Víšek J. Á.: Kolmogorov–Smirnov statistics in linear regression.In: Proc. ROBUST 2006, submitted |
Reference:
|
[32] Víšek J. Á.: Least trimmed squares – sensitivity study.In: Proc. Prague Stochastics 2006, submitted |
Reference:
|
[33] Zvára K.: Regresní analýza (Regression Analysis – in Czech).Academia, Prague 1989 |
. |