Previous |  Up |  Next

Article

Title: The least trimmed squares. Part III: Asymptotic normality (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 2
Year: 2006
Pages: 203-224
Summary lang: English
.
Category: math
.
Summary: Asymptotic normality of the least trimmed squares estimator is proved under general conditions. At the end of paper a discussion of applicability of the estimator (including the discussion of algorithm for its evaluation) is offered. (English)
Keyword: robust regression
Keyword: the least trimmed squares
Keyword: $\sqrt{n}$-consistency
Keyword: asymptotic normality
MSC: 62F12
MSC: 62F35
MSC: 62F40
MSC: 62J05
idZBL: Zbl 1248.62035
idMR: MR2241785
.
Date available: 2009-09-24T20:15:20Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135709
.
Related article: http://dml.cz/handle/10338.dmlcz/135697
Related article: http://dml.cz/handle/10338.dmlcz/135708
.
Reference: [1] Benáček V. J., Jarolím, M., Víšek J. Á.: Supply-side characteristics and the industrial structure of Czech foreign trade.In: Proc. Business and Economic Development in Central and Eastern Erupe: Implications for Economic Integration into wider Europe. Technical University in Brno and University of Wisconsin, Whitewater, and the Nottingham Trent University 1998, pp. 51–68
Reference: [2] Boček P., Lachout P.: Linear programming approach to LMS-estimation.Comput. Statist. Data Anal. (Memorial volume) 19(1995), 129–134 Zbl 0875.62292, MR 1323269, 10.1016/0167-9473(93)E0051-5
Reference: [3] Breiman L.: Probability.Addison–Wesley Publishing Company, London 1968 Zbl 0753.60001, MR 0229267
Reference: [4] Chatterjee S., Hadi A. S.: Sensitivity Analysis in Linear Regression.Wiley, New York 1988 Zbl 0648.62066, MR 0939610
Reference: [5] Čížek P.: Robust estimation with discrete explanatory variables.In: COMPSTAT 2003, pp. 509–514 MR 1986578
Reference: [6] Čížek P., Víšek J. Á.: Least trimmed squares.In: EXPLORE, Application Guide (W. Härdle, Z. Hlavka, and S. Klinke, eds.), Springer–Verlag, Berlin 2000, pp. 49–64
Reference: [7] Jurečková J., (1993) P. K. Sen: Regression rank scores scale statistics and studentization in linear models.In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica–Verlag, Heidelberg 1993, pp. 111–121 MR 1311932
Reference: [8] Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A.: Robust Statistics – The Approach Based on Influence Functions.Wiley, New York 1986 Zbl 0733.62038, MR 0829458
Reference: [9] Hawkins D. M., Olive D. J.: Improved feasible solution algorithms for breakdown estimation.Comput. Statist. Data Anal. 30 (1999), 1, 1–12 MR 1681450, 10.1016/S0167-9473(98)00082-6
Reference: [10] Hettmansperger T. P., Sheather S. J.: A cautionary note on the method of least median squares.Amer. Statist. 46 (1992), 79–83 MR 1165565
Reference: [11] Huber P. J.: Robust Statistics.Wiley, New York 1981 MR 0606374
Reference: [12] Liese F., Vajda I.: Consistency of $M$-estimators in general models.J. Multivar. Anal. 50 (1994), 93–114 MR 1292610, 10.1006/jmva.1994.1036
Reference: [13] Maronna R. A., Yohai V. J.: Asymptotic behaviour of general $M$-estimates for regression and scale with random carriers.Z. Wahrscheinlichkeitstheorie verw. Gebiete 58 (1981), 7–20 MR 0635268, 10.1007/BF00536192
Reference: [14] Pollard D.: Asymptotics for least absolute deviation regression estimator.Econometric Theory 7 (1991), 186–199 MR 1128411, 10.1017/S0266466600004394
Reference: [15] Portnoy S.: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Härdle, and D. Martin, eds.), Springer–Verlag, New York 1983, pp. 231–246 MR 0786311
Reference: [16] Rousseeuw P. J., Leroy A. M.: Robust Regression and Outlier Detection.Wiley, New York 1987 Zbl 0711.62030, MR 0914792
Reference: [17] Rubio A. M., Víšek J. Á.: Estimating the contamination level of data in the framework of linear regression analysis.Qűestiió 21 (1997), 9–36 Zbl 1167.62388, MR 1476149
Reference: [18] Štěpán J.: Teorie pravděpodobnosti (Probability Theory).Academia, Prague 1987
Reference: [19] Víšek J. Á.: A cautionary note on the method of Least Median of Squares reconsidered.In: Trans. Twelfth Prague Conference on Inform. Theory, Statist. Dec. Functions and Random Processes, Prague 1994, pp. 254–259
Reference: [20] Víšek J. Á.: On high breakdown point estimation.Comput. Statistics 11 (1996), 137–146 Zbl 0933.62015, MR 1394545
Reference: [21] Víšek J. Á.: Sensitivity analysis $M$-estimates.Ann. Inst. Statist. Math. 48 (1996), 469–495 MR 1424776, 10.1007/BF00050849
Reference: [22] Víšek J. Á.: Diagnostics of regression subsample stability.Probab. Math. Statist. 17 (1997), 2, 231–257 Zbl 0924.62072, MR 1490803
Reference: [23] Víšek J. Á.: Robust estimation of regression model.Bull. Czech Econometric Society 9 (1999), 57–79
Reference: [24] Víšek J. Á.: The least trimmed squares – random carriers.Bull. Czech Econometric Society 10 (1999), 1–30
Reference: [25] Víšek J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy.In: Proc. Macromodels’99, Rydzyna 1999,pp. 424–445
Reference: [26] Víšek J. Á.: On the diversity of estimates.Comput. Statist. Data Anal. 34 (2000) 67–89 Zbl 1052.62509, 10.1016/S0167-9473(99)00068-7
Reference: [27] Víšek J. Á.: Regression with high breakdown point.In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of the Czechoslovak Mathematicians and Physicists, Prague 2001, 324–356
Reference: [28] Víšek J. Á.: Sensitivity analysis of $M$-estimates of nonlinear regression model: Influence of data subsets.Ann. Inst. Statist. Math. 54 (2002), 2, 261–290 Zbl 1013.62072, MR 1910173, 10.1023/A:1022465701229
Reference: [29] Víšek J. Á.: The least weighted squares I.The asymptotic linearity of normal equation. Bull. Czech Econometric Society 9 (2002), 15, 31–58
Reference: [30] Víšek J. Á.: The least weighted squares II.Consistency and asymptotic normality. Bull. Czech Econometric Society 9 (2002), 16, 1–28
Reference: [31] Víšek J. Á.: Kolmogorov–Smirnov statistics in linear regression.In: Proc. ROBUST 2006, submitted
Reference: [32] Víšek J. Á.: Least trimmed squares – sensitivity study.In: Proc. Prague Stochastics 2006, submitted
Reference: [33] Zvára K.: Regresní analýza (Regression Analysis – in Czech).Academia, Prague 1989
.

Files

Files Size Format View
Kybernetika_42-2006-2_6.pdf 928.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo