Title:
|
$S$-measures, $T$-measures and distinguished classes of fuzzy measures (English) |
Author:
|
Struk, Peter |
Author:
|
Stupňanová, Andrea |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
367-378 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
$S$-measures are special fuzzy measures decomposable with respect to some fixed t-conorm $S$. We investigate the relationship of $S$-measures with some distinguished properties of fuzzy measures, such as subadditivity, submodularity, belief, etc. We show, for example, that each $S_P$-measure is a plausibility measure, and that each $S$-measure is submodular whenever $S$ is 1-Lipschitz. (English) |
Keyword:
|
fuzzy measure |
Keyword:
|
t-norm |
Keyword:
|
T-conorm |
Keyword:
|
subadditivity |
Keyword:
|
belief |
MSC:
|
03E72 |
MSC:
|
28E10 |
idZBL:
|
Zbl 1249.28031 |
idMR:
|
MR2253395 |
. |
Date available:
|
2009-09-24T20:16:40Z |
Last updated:
|
2015-03-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135720 |
. |
Reference:
|
[1] Bronevich A. G.: On the closure of families of fuzzy measures under eventwise aggregations.Fuzzy Sets and Systems 153 (2005), 1, 45–70 Zbl 1068.28012, MR 2202123 |
Reference:
|
[2] Chateauneuf A.: Decomposable capacities, distorted probabilities and concave capacities.Math. Soc. Sci. 31 (1996), 19–37 Zbl 0921.90001, MR 1379275, 10.1016/0165-4896(95)00794-6 |
Reference:
|
[3] Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications.Academic Press, New York 1980 Zbl 0444.94049, MR 0589341 |
Reference:
|
[4] Klement E. P., Mesiar R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dortrecht 2000 Zbl 1087.20041, MR 1790096 |
Reference:
|
[5] Klement E. P., Mesiar R., Pap E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval.Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8 (2000), 701–717 Zbl 0991.28014, MR 1803475, 10.1142/S0218488500000514 |
Reference:
|
[6] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information.Prentice Hall, Englewood Cliffs, New Jersey 1988 Zbl 0675.94025, MR 0930102 |
Reference:
|
[7] Mesiar R.: Generalizations of $k$-order additive discrete fuzzy measures.Fuzzy Sets and Systems 102 (1999), 423–428 Zbl 0936.28014, MR 1676909, 10.1016/S0165-0114(98)00216-4 |
Reference:
|
[8] Mesiar R.: Triangular norms – an overview.In: Computational Inteligence in Theory and Practice (B. Reusch, K.-H. Temme, eds.), Physica–Verlag, Heidelberg 2001, pp. 35–54 Zbl 1002.68164, MR 1858675 |
Reference:
|
[9] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.), Springer, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0 |
Reference:
|
[10] Pap E.: Null-additive Set Functions.Kluwer Academic Publishers, Dordrecht 1995 Zbl 1003.28012, MR 1368630 |
Reference:
|
[11] Pap E.: Pseudo-additive measures and their applications.In: Handbook of Measure Theory, Volume II (E. Pap, ed.), Elsevier, North–Holland, Amsterdam 2002, pp. 1403–1465 Zbl 1018.28010, MR 1954645 |
Reference:
|
[12] Smutná D.: On a peculiar t-norm.Busefal 75 (1998), 60–67 |
Reference:
|
[13] Sugeno M.: Theory of Fuzzy Integrals and Applications.Ph.D. Thesis, Tokyo Institute of Technology, Tokyo 1974 |
Reference:
|
[14] Valášková Ĺ., Struk P.: Preservation of Distinguished Fuzzy Measure Classes by Distortion.In: MDAI 2004, Barcelona (V. Torra, Y. Narukawa, eds., Lecture Notes in Artificial Intelligence 3131), Springer–Verlag, Berlin 2004, pp. 175–182 Zbl 1109.28303 |
Reference:
|
[15] Wang Z., Klir G. J.: Fuzzy Measures Theory.Plenum Press, New York 1992 |
Reference:
|
[16] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms.J. Math. Anal. Appl. 101 (1984), 114–138 Zbl 0614.28019, MR 0746230, 10.1016/0022-247X(84)90061-1 |
Reference:
|
[17] Zadeh L.: Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems 1 (1978), 3–28 MR 0480045, 10.1016/0165-0114(78)90029-5 |
. |