Previous |  Up |  Next

Article

Title: Inference in conditional probability logic (English)
Author: Pfeifer, Niki
Author: Kleiter, Gernot D.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 4
Year: 2006
Pages: 391-404
Summary lang: English
.
Category: math
.
Summary: An important field of probability logic is the investigation of inference rules that propagate point probabilities or, more generally, interval probabilities from premises to conclusions. Conditional probability logic (CPL) interprets the common sense expressions of the form “if ..., then ...” by conditional probabilities and not by the probability of the material implication. An inference rule is probabilistically informative if the coherent probability interval of its conclusion is not necessarily equal to the unit interval $[0,1]$. Not all logically valid inference rules are probabilistically informative and vice versa. The relationship between logically valid and probabilistically informative inference rules is discussed and illustrated by examples such as the modus ponens or the affirming the consequent. We propose a method to evaluate the strength of CPL inference rules. Finally, an example of a proof is given that is purely based on CPL inference rules. (English)
Keyword: probability logic
Keyword: conditional
Keyword: modus ponens
Keyword: system p
MSC: 03B48
MSC: 03B65
MSC: 68T37
idZBL: Zbl 1249.68262
idMR: MR2280520
.
Date available: 2009-09-24T20:16:58Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/135723
.
Reference: [1] Adams E. W.: The Logic of Conditionals.Reidel, Dordrecht 1975 Zbl 0324.02002, MR 0485189
Reference: [2] Biazzo V., Gilio A.: A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments.Internat. J. Approx. Reason. 24 (2000), 2-3, 251–272 Zbl 0995.68124, MR 1766286, 10.1016/S0888-613X(00)00038-4
Reference: [3] Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G.: Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in System P.J. Appl. Non-Classical Logics 12 (2002), 2, 189–213 Zbl 1038.03023, MR 1949978, 10.3166/jancl.12.189-213
Reference: [4] Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G.: Probabilistic logic under coherence: Complexity and algorithms.Ann. Math. Artif. Intell. 45 (2005), 1-2, 35–81 Zbl 1083.03027, MR 2220432, 10.1007/s10472-005-9005-y
Reference: [5] Calabrese P. G., Goodman I. R.: Conditional event algebras and conditional probability logics.In: Proc. Internat. Workshop Probabilistic Methods in Expert Systems (R. Scozzafava, ed.), Societa Italiana di Statistica, Rome 1993, pp. 1–35
Reference: [6] Calabrese P. G.: Conditional events: Doing for logic and probability what fractions do for integer arithmetic.In: Proc.“The Notion of Event in Probabilistic Epistemology”, Dipartimento di Matematica Applicata “Bruno de Finetti”, Triest 1996, pp. 175–212
Reference: [7] Coletti G.: Coherent numerical and ordinal probabilistic assessment.IEEE Trans. Systems Man Cybernet. 24 (1994), 1747–1754 MR 1302033, 10.1109/21.328932
Reference: [8] Coletti G., Scozzafava, R., Vantaggi B.: Probabilistic reasoning as a general unifying tool.In: ECSQARU 2001 (S. Benferhat and P. Besnard, eds., Lecture Notes in Artificial Intelligence 2143), Springer–Verlag, Berlin 2001, pp. 120–131 Zbl 1005.68549
Reference: [9] Coletti G., Scozzafava R.: Probabilistic Logic in a Coherent Setting.Kluwer, Dordrecht 2002 Zbl 1040.03017, MR 2042026
Reference: [10] Finetti B. de: Theory of Probability (Vol.1 and 2). Wiley, Chichester 1974
Reference: [11] Fagin R., Halpern J. Y., Megiddo N.: A logic for reasoning about probabilities.Inform. and Comput. 87 (1990), 78–128 Zbl 0811.03014, MR 1055950, 10.1016/0890-5401(90)90060-U
Reference: [12] Frisch A., Haddawy P.: Anytime deduction for probabilistic logic.Artif. Intell. 69 (1994), 93–122 Zbl 0809.03016, MR 1294875, 10.1016/0004-3702(94)90079-5
Reference: [13] Gilio A.: Probabilistic consistency of conditional probability bounds.In: Advances in Intelligent Computing (B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, eds., Lecture Notes in Computer Science 945), Springer–Verlag, Berlin 1995
Reference: [14] Gilio A.: Probabilistic reasoning under coherence in System P.Ann. Math. Artif. Intell. 34 (2002), 5–34 Zbl 1014.68165, MR 1895469, 10.1023/A:1014422615720
Reference: [15] Hailperin T.: Sentential Probability Logic.Origins, Development, Current Status, and Technical Applications. Lehigh University Press, Bethlehem 1996 Zbl 0922.03026, MR 1437603
Reference: [16] Kraus S., Lehmann, D., Magidor M.: Nonmonotonic reasoning, preferential models and cumulative logics.Artif. Intell. 44 (1990), 167–207 Zbl 0782.03012, MR 1072012, 10.1016/0004-3702(90)90101-5
Reference: [17] Lukasiewicz T.: Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events.Internat. J. Approx. Reason. 21 (1999), 23–61 Zbl 0961.68135, MR 1693211, 10.1016/S0888-613X(99)00006-7
Reference: [18] Lukasiewicz T.: Weak nonmonotonic probabilistic logics.Artif. Intell. 168 (2005), 119–161 Zbl 1132.68737, MR 2175580, 10.1016/j.artint.2005.05.005
Reference: [19] Pfeifer N., Kleiter G. D.: Towards a mental probability logic.Psychologica Belgica 45 (2005), 1, 71–99. Updated version at: http://www.users.sbg.ac.at/~pfeifern/ 10.5334/pb-45-1-71
Reference: [20] Pfeifer N., Kleiter G. D.: Towards a probability logic based on statistical reasoning.In: Proc. 11th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Vol. 3, Editions E. D. K., Paris 2006, pp. 2308–2315
Reference: [21] Sobel J. H.: Modus Ponens and Modus Tollens for Conditional Probabilities,, Updating on Uncertain Evidence.Technical Report, University of Toronto 2005. http://www.scar.utoronto.ca/~sobel/
Reference: [22] Wagner C.: Modus Tollens probabilized.British J. Philos. Sci. 55 (2004), 747–753 Zbl 1062.03015, MR 2115533, 10.1093/bjps/55.4.747
.

Files

Files Size Format View
Kybernetika_42-2006-4_1.pdf 365.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo