Previous |  Up |  Next

Article

Title: Interval linear regression analysis based on Minkowski difference – a bridge between traditional and interval linear regression models (English)
Author: Inuiguchi, Masahiro
Author: Tanino, Tetsuzo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 4
Year: 2006
Pages: 423-440
Summary lang: English
.
Category: math
.
Summary: In this paper, we extend the traditional linear regression methods to the (numerical input)-(interval output) data case assuming both the observation/measurement error and the indeterminacy of the input-output relationship. We propose three different models based on three different assumptions of interval output data. In each model, the errors are defined as intervals by solving the interval equation representing the relationship among the interval output, the interval function and the interval error. We formalize the estimation problem of parameters of the interval function so as to minimize the sum of square/absolute interval errors. Introducing suitable interpretation of minimization of an interval function, each estimation problem is well-formulated as a quadratic or linear programming problem. It is shown that the proposed methods have close relation to both traditional and interval linear regression methods which are formulated in different manners. (English)
Keyword: interval linear regression analysis
Keyword: least squares method
Keyword: minimum
MSC: 26E25
MSC: 62J05
MSC: 65G40
idZBL: Zbl 1249.65012
idMR: MR2280522
.
Date available: 2009-09-24T20:17:16Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/135725
.
Reference: [1] Aubin J.-P., Frankowska H.: Set-Valued Analysis.Birkhäuser, Boston 1990 Zbl 1168.49014, MR 1048347
Reference: [2] Diamond P.: Fuzzy least squares.Inform. Sci. 46 (1988), 141–157 Zbl 0663.65150, MR 0964762, 10.1016/0020-0255(88)90047-3
Reference: [3] Diamond P., Tanaka H.: Fuzzy regression analysis.In: Fuzzy Sets in Decision Analysis, Operations Research and Statistics (R. Słowinski, ed.), Kluwer, Boston 1988, pp. 349–387 MR 1672373
Reference: [4] Dubois D., Prade H.: Fuzzy numbers: An overview.In: Analysis of Fuzzy Information, Vol. I: Mathematics and Logic (J. C. Bezdek, ed.), CRC Press, Boca Raton 1987, pp. 3–39 Zbl 0663.94028, MR 0910312
Reference: [5] Huber P. J.: Robust statistics.Ann. Math. Statist. 43 (1972), 1041–1067 Zbl 0254.62023, MR 0314180
Reference: [6] Ignizio J. P.: Linear Programming in Single- & Multiple-Objective Systems.Prentice-Hall, Englewood Cliffs, NJ 1982 Zbl 0484.90068
Reference: [7] Inuiguchi M., Kume Y.: Goal programming problems with interval coefficients and target ontervals.European J. Oper. Res. 52 (1991), 345–360 10.1016/0377-2217(91)90169-V
Reference: [8] Moore R. E.: Methods and Applications of Interval Analysis.SIAM, Philadelphia 1979 Zbl 0417.65022, MR 0551212
Reference: [9] Shape W. F.: Mean-absolute-deviation characteristic lines for securities and portfolios.Management Sci. 18 (1971), 2, B1–B13 10.1287/mnsc.18.2.B1
Reference: [10] Tanaka H., Hayashi, I., Nagasaka K.: Interval regression analysis by possibilistic measures (in Japanese).Japan. J. Behaviormetrics 16 (1988), 1, 1–7 10.2333/jbhmk.16.1
Reference: [11] Tanaka H., Lee H.: Interval regression analysis by quadratic programming approach.IEEE Trans. Fuzzy Systems 6 (1998), 4, 473–481 10.1109/91.728436
Reference: [12] Tanaka H., Uejima, S., Asai K.: Linear regression analysis with fuzzy model.IEEE Trans. Systems Man Cybernet. 12 (1982), 903–907 Zbl 0501.90060, 10.1109/TSMC.1982.4308925
Reference: [13] Tanaka H., Watada J.: Possibilistic linear systems and their application to the linear regression model.Fuzzy Sets and Systems 27 (1988), 275–289 Zbl 0662.93066, MR 0956375, 10.1016/0165-0114(88)90054-1
.

Files

Files Size Format View
Kybernetika_42-2006-4_3.pdf 852.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo