Full entry |
PDF
(0.9 MB)
Feedback

invariant measures; zero range process; binary tree; queues

References:

[1] Andjel E. D.: **Invariant measures for the zero range process**. Ann. Probab. 10 (1982), 525–547 DOI 10.1214/aop/1176993765 | MR 0659526 | Zbl 0492.60096

[3] Harris T. E.: **Nearest-neighbor Markov interaction processes on multidimensional lattice**. Adv. in Math. 9 (1972), 66–89 DOI 10.1016/0001-8708(72)90030-8 | MR 0307392

[4] Liggett T. M.: **Interacting Particle Systems**. Springer–Verlag, New York 1985 MR 0776231

[5] Saada E.: **Processus de zero-range avec particule marquee**. Ann. Inst. H. Poincaré 26 (1990), 1, 5–17 MR 1075436 | Zbl 0703.60101

[6] Sethuraman S.: **On extremal measures for conservative particle systems**. Ann. Inst. H. Poincaré 37 (2001), 2, 139–154 DOI 10.1016/S0246-0203(00)01062-1 | MR 1819121 | Zbl 0981.60098

[7] Spitzer F.: **Interaction of Markov processes**. Adv. in Math. 5 (1970), 246–290 DOI 10.1016/0001-8708(70)90034-4 | MR 0268959 | Zbl 0312.60060

[8] Štěpán J.: **A noncompact Choquet theorem**. Comment. Math. Univ. Carolin. 25 (1984), 1, 73–89 MR 0749117 | Zbl 0562.60006

[9] Waymire E.: **Zero-range interaction at Bose-Einstein speeds under a positive recurrent single particle law**. Ann. Probab. 8 (1980), 3, 441–450 DOI 10.1214/aop/1176994719 | MR 0573285 | Zbl 0442.60095