Previous |  Up |  Next

Article

Title: Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form (English)
Author: Bernal, Miguel
Author: Hušek, Petr
Author: Kučera, Vladimír
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 6
Year: 2006
Pages: 665-672
Summary lang: English
.
Category: math
.
Summary: This paper presents a relaxed scheme for controller synthesis of continuous- time systems in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC control law. The relaxations here provided allow state and input dependence of the membership functions’ derivatives, as well as independence on initial conditions when input constraints are needed. Moreover, the controller synthesis is attainable via linear matrix inequalities, which are efficiently solved by commercially available software. (English)
Keyword: fuzzy models
Keyword: nonquadratic stabilization
Keyword: nonlinear control
Keyword: Lyapunov function
Keyword: linear matrix inequality (LMI)
MSC: 62A01
MSC: 62A10
MSC: 62F15
MSC: 93C42
MSC: 93D15
MSC: 93E12
idZBL: Zbl 1249.93168
idMR: MR2296507
.
Date available: 2009-09-24T20:19:56Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/135743
.
Reference: [1] Apkarian X., Gahinet X.: A convex characterization of gain scheduling Hinf controllers.IEEE Trans. Control Systems 40 (1995), 853–864 MR 1328081
Reference: [2] Begovich O., Sanchez E. N., Maldonado M.: Takagi–Sugeno fuzzy scheme for real trajectory tracking of an underactuated robot.IEEE Trans. Control Systems Techn. 10 (2002), 14–20 10.1109/87.974334
Reference: [3] Bernal M., Hušek P.: Piecewise quadratic stability of affine Takagi–Sugeno fuzzy control systems.In: Proc. Advanced Fuzzy-Neural Control Conference, Oulu 2004, pp.157–162
Reference: [4] Bernal M., Hušek P.: Controller synthesis with input and output constraints for fuzzy systems.In: 16th IFAC World Congress DVD-edition, Prague 2005
Reference: [5] Bernal M.: Non-quadratic discrete fuzzy controller design performing decay rate.In: FUZZ–IEEE Internat. Conference, Reno 2005, CD edition
Reference: [6] Bernal M., Hušek, P., Kučera V.: Non-quadratic design for continuous-time systems in the Takagi–Sugeno form.Submitted to Automatica
Reference: [7] Feng G.: Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions.IEEE Trans. Fuzzy Systems 11 (2003), 605–612 10.1109/TFUZZ.2003.817837
Reference: [8] Feng G.: Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lyapunov functions.IEEE Trans. Fuzzy Systems 12 (2004), 22–28 10.1109/TFUZZ.2003.819833
Reference: [9] Guerra T. M., Vermeiren L.: LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in Takagi–Sugeno’s form.Automatica 40 (2004), 823–829 MR 2152188, 10.1016/j.automatica.2003.12.014
Reference: [10] Johansson M., Rantzer, A., Arzen K.: Piecewise quadratic stability of fuzzy systems.IEEE Trans. Fuzzy Systems 7 (1999), 713–722 10.1109/91.811241
Reference: [11] Rantzer A., Johansson M.: Piecewise linear quadratic optimal control.IEEE Trans. Automat. Control 45 (2000), 629–637 Zbl 0969.49016, MR 1764832, 10.1109/9.847100
Reference: [12] Takagi T., Sugeno M.: Fuzzy identification of systems and its applications to modeling and control.IEEE Trans. Systems, Man and Cybernet. 15 (1985), 116–132 Zbl 0576.93021, 10.1109/TSMC.1985.6313399
Reference: [13] Tanaka K., Sugeno M.: Stability analysis of fuzzy systems using Lyapunov’s direct method.In: Proc. NAFIPS’90, pp. 133–136
Reference: [14] Tanaka K., Ikeda, T., Wang H. O.: Fuzzy regulators and fuzzy observers: Relaxed stability conditions and lmi-based designs.IEEE Trans. Fuzzy Systems 6 (1998), 250–264 10.1109/91.669023
Reference: [15] Tanaka K., Hori, T., Wang H. O.: A multiple function approach to stabilization of fuzzy control systems.IEEE Trans. Fuzzy Systems 11 (2003), 582–589 10.1109/TFUZZ.2003.814861
Reference: [16] H. O. Wang , Tanaka, K., Griffin M.: An approach to fuzzy control of nonlinear systems: Stability and design issues.IEEE Trans. Fuzzy Systems 4 (1996), 14–23 10.1109/91.481841
.

Files

Files Size Format View
Kybernetika_42-2006-6_3.pdf 665.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo