Previous |  Up |  Next

Article

Title: Preservation of properties of fuzzy relations during aggregation processes (English)
Author: Drewniak, Józef
Author: Dudziak, Urszula
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 2
Year: 2007
Pages: 115-132
Summary lang: English
.
Category: math
.
Summary: Diverse classes of fuzzy relations such as reflexive, irreflexive, symmetric, asymmetric, antisymmetric, connected, and transitive fuzzy relations are studied. Moreover, intersections of basic relation classes such as tolerances, tournaments, equivalences, and orders are regarded and the problem of preservation of these properties by $n$-ary operations is considered. Namely, with the use of fuzzy relations $R_1,\ldots ,R_n$ and $n$-argument operation $F$ on the interval $[0,1]$, a new fuzzy relation $R_F=F(R_1,\ldots ,R_n)$ is created. Characterization theorems concerning the problem of preservation of fuzzy relations properties are given. Some conditions on aggregation functions are weakened in comparison to those previously given by other authors. (English)
Keyword: fuzzy relation
Keyword: fuzzy relation properties
Keyword: fuzzy relation classes
Keyword: $\ast $-transitivity
Keyword: transitivity
Keyword: aggregation functions
Keyword: relation aggregation
Keyword: triangular norms
MSC: 03E72
MSC: 68T37
idZBL: Zbl 1135.68050
idMR: MR2343390
.
Date available: 2009-09-24T20:22:13Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135761
.
Reference: [1] Bezdek J. C., Harris J. D.: Fuzzy partitions and relations: an axiomatic basis for clustering.Fuzzy Sets and Systems 1 (1978), 111–127 Zbl 0442.68093, MR 0502319
Reference: [2] Bodenhofer U.: A Similarity–Based Generalization of Fuzzy Orderings.PhD Thesis. Universitätsverlag Rudolf Trauner, Linz 1999 Zbl 1113.03333
Reference: [3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods.In: Aggregation Operators (T. Calvo et al., ed.), Physica–Verlag, Heildelberg 2002, pp. 3–104 Zbl 1039.03015, MR 1936384
Reference: [4] Baets B. De, Mesiar R.: T-partitions.Fuzzy Sets and Systems 97 (1998), 211–223 Zbl 0930.03070, MR 1645614
Reference: [5] Chiclana F., Herrera F., Herrera-Viedma, E., Martínez L.: A note on the reciprocity in the aggregation of fuzzy preference relations using OWA oprators.Fuzzy Sets and Systems 137 (2003), 71–83 MR 1992699
Reference: [6] Drewniak J.: Fuzzy Relation Calculus.Silesian University, Katowice 1989 Zbl 0701.04002, MR 1009161
Reference: [7] Drewniak J., Dudziak U.: Safe transformations of fuzzy relations.In: Current Issues in Data and Knowledge Engineering (B. De Baets et al., ed.), EXIT, Warszawa 2004, pp. 195–203
Reference: [8] Drewniak J., Dudziak U.: Aggregations preserving classes of fuzzy relations.Kybernetika 41 (2005), 3, 265–284 MR 2181418
Reference: [9] Drewniak J., Dudziak U.: Aggregations in classes of fuzzy relations.Ann. Acad. Paed. Cracoviensis 33, Studia Math. 5 (2006), 33–43 Zbl 1129.03029, MR 2312576
Reference: [10] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Spport.Kluwer Academic Publishers, Dordrecht 1994
Reference: [11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [12] Marichal J. L.: On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom.Aequationes Math. 59 (2000), 74–83 Zbl 0945.39014, MR 1741471
Reference: [13] Ovchinnikov S.: Similarity relations, fuzzy partitions, and fuzzy orderings.Fuzzy Sets and Systems 40 (1991), 107–126 Zbl 0725.04003, MR 1103658
Reference: [14] Peneva V., Popchev I.: Aggregation of fuzzy relations.C. R. Acad. Bulgare Sci. 51 (1998), 9–10, 41–44 MR 1727541
Reference: [15] Peneva V., Popchev I.: Properties of the aggregation operators related with fuzzy relations.Fuzzy Sets and Systems 139 (2003), 3, 615–633 Zbl 1054.91021, MR 2015157
Reference: [16] Peneva V., Popchev I.: Transformations by parameterized t-norms preserving the properties of fuzzy relations.C. R. Acad. Bulgare Sci. 57 (2004), 10, 9–18 Zbl 1059.03059, MR 2104092
Reference: [17] Peneva V., Popchev I.: Aggregation of fuzzy preference relations with different importance.C. R. Acad. Bulgare Sci. 58 (2005), 5, 499–506 Zbl 1115.91002
Reference: [18] Peneva V., Popchev I.: Aggregation of fuzzy preference relations by composition.C. R. Acad. Bulgare Sci. 59 (2006), 4, 373–380 Zbl 1098.90040, MR 2104092
Reference: [19] Roubens M., Vincke P.: Preference Modelling.Springer–Verlag, Berlin 1985 Zbl 0612.92020, MR 0809182
Reference: [20] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity.Internat. J. Uncertainty, Fuzziness, Knowledge–Based Systems 10 (2002), 11–35 Zbl 1053.03514, MR 1962666
Reference: [21] Saminger S., Maes, K., Baets B. De: Aggregation of T-transitive reciprocal relations.In: Proc. of AGOP’05, Lugano 2005, pp. 113–118
Reference: [22] Zadeh L. A.: Similarity relations and fuzzy orderings.Inform. Sci. 3 (1971), 177–200 Zbl 0218.02058, MR 0297650
.

Files

Files Size Format View
Kybernetika_43-2007-2_2.pdf 861.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo