Previous |  Up |  Next


Title: A categorical view at generalized concept lattices (English)
Author: Krajči, Stanislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 2
Year: 2007
Pages: 255-264
Summary lang: English
Category: math
Summary: We continue in the direction of the ideas from the Zhang’s paper [Z] about a relationship between Chu spaces and Formal Concept Analysis. We modify this categorical point of view at a classical concept lattice to a generalized concept lattice (in the sense of Krajči [K1]): We define generalized Chu spaces and show that they together with (a special type of) their morphisms form a category. Moreover we define corresponding modifications of the image / inverse image operator and show their commutativity properties with mapping defining generalized concept lattice as fuzzifications of Zhang’s ones. (English)
Keyword: fuzzy concept lattice
Keyword: Chu space
Keyword: category theory
MSC: 03G10
MSC: 06D72
MSC: 18D35
MSC: 68T30
idZBL: Zbl 1132.06300
idMR: MR2343400
Date available: 2009-09-24T20:23:30Z
Last updated: 2012-06-06
Stable URL:
Reference: [1] Bělohlávek R.: Fuzzy concepts and conceptual structures: induced similarities.In: Proc. Joint Conference Inform. Sci. ’98, Durham (U.S.A.) 1998, Vol. I, pp. 179–182
Reference: [2] Bělohlávek R.: Concept lattices and order in fuzzy logic.Ann. Pure Appl. Logic 128 (2004), 277–298 Zbl 1060.03040, MR 2060556
Reference: [3] Bělohlávek R., Sklenář, V., Zacpal J.: Crisply generated fuzzy concepts.In: ICFCA 2005 (B. Ganter and R. Godin, eds., Lecture Notes in Computer Science 3403), Springer–Verlag, Berlin – Heidelberg 2005, pp. 268–283 Zbl 1078.68142
Reference: [4] Bělohlávek R., Vychodil V.: Reducing the size of fuzzy concept lattices by hedges.In: Proc. FUZZ–IEEE 2005, The IEEE Internat. Conference Fuzzy Systems, Reno 2005, pp. 663–668
Reference: [5] Yahia S. Ben, Jaoua A.: Discovering knowledge from fuzzy concept lattice.In: Data Mining and Computational Intelligence (A. Kandel, M. Last, and H. Bunke, eds.), Physica–Verlag, Heidelberg 2001, pp. 169–190
Reference: [6] Ganter B., Wille R.: Formal Concept Analysis, Mathematical Foundation.Springer–Verlag, Berlin 1999 MR 1707295
Reference: [7] Krajči S.: A generalized concept lattice.Logic J. of the IGPL 13 (2005), 5, 543–550 Zbl 1088.06005, MR 2187880
Reference: [8] Krajči S.: The basic theorem on generalized concept lattice.In: Proc. 2nd Internat. Workshop CLA 2004 (V. Snášel and R. Bělohlávek, eds.), Ostrava 2004, pp. 25–33
Reference: [9] Krajči S.: Every concept lattice with hedges is isomorphic to some generalized concept lattice.In: Proc. 3nd Internat. Workshop CLA 2004 (R. Bělohlávek and V. Snášel, eds.), Olomouc 2005, pp. 1–9
Reference: [10] Krajči S.: Cluster based efficient generation of fuzzy concepts.Neural Network World 13 (2003), 5, 521–530
Reference: [11] Pollandt S.: Fuzzy Begriffe.Springer–Verlag, Berlin 1997 Zbl 0870.06008, MR 1710383
Reference: [12] Pollandt S.: Datenanalyse mit Fuzzy–Begriffen.In: Begriffliche Wissensverarbeitung, Methoden und Anwendungen (G. Stumme and R. Wille, eds.), Springer–Verlag, Heidelberg 2000, pp. 72–98 Zbl 0958.68162
Reference: [13] Shostak A.: Fuzzy categories versus categories of fuzzily structured sets: Elements of the theory of fuzzy categories.In: Mathematik–Arbeitspapiere N 48: Categorical Methods in Algebra and Topology (A collection of papers in honor of Horst Herrlich, Hans-E. Porst, ed.), Bremen 1977, pp. 407–438
Reference: [14] Zhang G. Q.: Chu spaces, concept lattices, and domains.In: Proc. Nineteenth Conference on the Mathematical Foundations of Programming Semantics, Montreal 2003, Electronic Notes in Theoretical Computer Science 83, 2004


Files Size Format View
Kybernetika_43-2007-2_12.pdf 685.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo