Full entry |
PDF
(0.7 MB)
Feedback

finite element method; Darcy’s flow; fractured porous medium

References:

[1] Bogdanov I. I., Mourzenko V. V., Thovert J. F., Adler P. M.: **Effective permeability of fractured porous media in steady state flow**. Water Res. Research 39 (2003), 1023–1038

[2] Diodato D. M.: **Compendium of Fracture Flow Models**. Center for Environmental Restoration Systems, Energy Systems Division, Argonne National Laboratory, USA 1994. Available on: http://www.thehydrogeologist.com/docs/cffm/cffmtoc.htm

[3] Kaasschieter E. F., Huijben A. J. M.: **Mixed-hybrid finite elements and streamline computation for the potential flow problem**. Numer. Methods Partial Differential Equations 8 (1992), 221–266 DOI 10.1002/num.1690080302 | MR 1158244 | Zbl 0767.76029

[4] Maryška J.: **Approximation of the Mixed-hybrid Formulation of the Porous Media Flow Problem (in Czech)**. Technical Report No. 609, Institute of Computer Science of the Academy of Sciences of the Czech Republic, Prague 1995

[5] Maryška J., Rozložník, M., Tůma M.: **Mixed-hybrid finite-element approximation of the potential fluid-flow problem**. J. Comput. Appl. Math. 63 (1995), 383–392 DOI 10.1016/0377-0427(95)00066-6 | MR 1365577 | Zbl 0852.76045

[6] Maryška J., Rozložník, M., Tůma M.: **Schur complement systems in the mixed-hybrid finite element approximation of the potential fluid flow problem**. SIAM J. Sci. Comput. 22 (2000), 704–723 DOI 10.1137/S1064827598339608 | MR 1780621 | Zbl 0978.76052

[7] Maryška J., Severýn, O., Vohralík M.: **Mixed-hybrid finite elements and streamline computation for the potential flow problem**. Computational Geosciences 18 (2005), 8/3, 217–234

[8] Vohralík M., Maryška, J., Severýn O.: **Mixed and nonconforming finite element methods on a system of polygons**. To appear in Appl. Numer. Math MR 2294120 | Zbl 1112.65123