Previous |  Up |  Next

Article

Title: Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems (English)
Author: Hiraoka, Yasuaki
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 6
Year: 2007
Pages: 797-806
Summary lang: English
.
Category: math
.
Summary: We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example. (English)
Keyword: rigorous numerics
Keyword: exponential dichotomy
Keyword: homoclinic orbits
MSC: 34C37
MSC: 34D09
MSC: 37C29
MSC: 37M20
MSC: 65G20
MSC: 65P30
idZBL: Zbl 1138.65107
idMR: MR2388394
.
Date available: 2009-09-24T20:29:37Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135816
.
Reference: [1] Chow S.-N., Deng, B., Fiedler B.: Homoclinic bifurcation at resonant eigenvalues.J. Dyn. Differential Equations 2 (1990), 177–244 Zbl 0703.34050, MR 1050642, 10.1007/BF01057418
Reference: [2] Coddington E. A., Levinson L.: Theory of Ordinary Differential Equations.McGraw-Hill, New York 1955 Zbl 0064.33002, MR 0069338
Reference: [3] Coppel W. A.: Dichotomies in Stability Theory.(Lecture Notes in Mathematics 629.), Springer-Verlag, Berlin 1978 Zbl 0376.34001, MR 0481196
Reference: [4] Deng B.: The Sil’nikov problem, exponential expansion, strong $\lambda $-lemma, $C^1$-linearization, and homoclinic bifurcation.J. Differential Equations 79 (1989), 189–231 MR 1000687, 10.1016/0022-0396(89)90100-9
Reference: [5] Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.Springer–Verlag, Berlin 1983 Zbl 0515.34001, MR 0709768
Reference: [6] Hiraoka Y.: in preparatio.
Reference: [7] Iooss G., Pérouème M. C.: Perturbed homoclinic solutions in reversible 1:1 resonance vector fields.J. Differential Equations 102 (1993), 62–88 Zbl 0792.34044, MR 1209977, 10.1006/jdeq.1993.1022
Reference: [8] Kapitula T.: The Evans function and generalized Melnikov integrals.SIAM J. Math. Anal. 30 (1999), 273–297 Zbl 0921.34009, MR 1664760, 10.1137/S0036141097327963
Reference: [9] Kokubu H.: Homoclinic and heteroclinic bifurcations in vector fields.Japan J. Appl. Math. 5 (1988), 455–501 MR 0965875, 10.1007/BF03167912
Reference: [10] Kisaka M., Kokubu, H., Oka H.: Bifurcations to $N$-Homoclinic orbits and $N$-periodic orbits in vector fields.J. Dyn. Differential Equations 5 (1993), 305–357 Zbl 0784.34038, MR 1223451, 10.1007/BF01053164
Reference: [11] Lohner R. J.: Einschliessung der Lösung gewonhnlicher Anfangs- and Randwertaufgaben und Anwendungen.Thesis, Universität Karlsruhe (TH) 1988
Reference: [12] Melnikov V. K.: On the stability of center for time periodic perturbations.Trans. Moscow Math. Soc. 12 (1963) , 1–57 MR 0156048
Reference: [13] Oishi S.: Research Institute for Mathematical Sciences Kôkyûroku, 928 (1995), 14–1.
Reference: [14] Vanderbauwhede A., Fiedler B.: Homoclinic period blow-up in reversible and conservative systems.Z. Angew. Math. Phys. 43 (1992), 292–318 Zbl 0762.34023, MR 1162729, 10.1007/BF00946632
Reference: [15] Wilczak D., Zgliczyński P.: Heteroclinic connections between periodic orbits in planar restricted circular three-body problem – a computer assisted proof.Comm. Math. Phys. 234 (2003), 37–75 Zbl 1055.70005, MR 1961956, 10.1007/s00220-002-0709-0
Reference: [16] Yamamoto N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem.SIAM J. Numer. Anal. 35 (1998), 2004–2013 Zbl 0972.65084, MR 1639986, 10.1137/S0036142996304498
.

Files

Files Size Format View
Kybernetika_43-2007-6_5.pdf 1.141Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo