Previous |  Up |  Next

Article

Title: Finite difference scheme for the Willmore flow of graphs (English)
Author: Oberhuber, Tomáš
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 43
Issue: 6
Year: 2007
Pages: 855-867
Summary lang: English
.
Category: math
.
Summary: In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional numerical viscosity is necessary in some cases. We also present theorem showing stability of the scheme together with the EOC and several results of the numerical experiments. (English)
Keyword: Willmore flow
Keyword: method of lines
Keyword: curvature minimization
Keyword: gradient flow
Keyword: Laplace–Beltrami operator
Keyword: Gauss curvature
Keyword: central differences
Keyword: numerical viscosity
MSC: 35K35
MSC: 35K55
MSC: 53C44
MSC: 65M12
MSC: 65M20
MSC: 74S20
idZBL: Zbl 1140.53032
idMR: MR2388399
.
Date available: 2009-09-24T20:30:21Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/135821
.
Reference: [1] Beneš M.: Numerical solution for surface diffusion on graphs.In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University Fukuoka 2006, pp. 9–25 MR 2279046
Reference: [2] Deckelnick K., Dziuk G.: Error estimates for the Willmore flow of graphs.Interfaces Free Bound. 8 (2006), 21–46 MR 2231251, 10.4171/IFB/134
Reference: [3] Droske M., Rumpf M.: A level set formulation for Willmore flow.Interfaces Free Bound. 6 (2004), 3, 361–378 Zbl 1062.35028, MR 2095338, 10.4171/IFB/105
Reference: [4] Du Q., Liu C., Ryham, R., Wang X.: A phase field formulation of the Willmore problem.Nonlinearity (2005), 18, 1249–1267 Zbl 1125.35366, MR 2134893
Reference: [5] Du Q., Liu, C., Wang X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes.J. Comput. Phys. (2004), 198, 450–468 MR 2062909
Reference: [6] Dziuk G., Kuwert, E., Schätzle R.: Evolution of elastic curves in $\mathbb R\mathnormal ^n$: Existence and Computation.SIAM J. Math. Anal. 41 (2003), 6, 2161–2179 MR 2034610
Reference: [7] Kuwert E., Schätzle R.: The Willmore flow with small initial energy.J. Differential Geom. 57 (2001), 409–441 Zbl 1035.53092, MR 1882663
Reference: [8] Minárik V., Kratochvíl, J., Mikula K.: Numerical simulation of dislocation dynamics by means of parametric approach.In: Proc. Czech Japanese Seminar in Applied Mathematics (M. Beneš, J. Mikyška, and T. Oberhuber, eds.), Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague 2005, pp. 128–138
Reference: [9] Oberhuber T.: Computational study of the Willmore flow on graphs.Accepted to the Proc. Equadiff 11, 2005
Reference: [10] Oberhuber T.: Numerical solution for the Willmore flow of graphs.In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University Fukuoka, October 2006, ISSN 1881-4042, pp. 126–138 Zbl 1145.65323, MR 2279053
Reference: [11] Simonett G.: The Willmore flow near spheres.Differential and Integral Equations 14 (2001), No. 8, 1005–1014 Zbl 1161.35429, MR 1827100
Reference: [12] Willmore T. J.: Riemannian Geometry.Oxford University Press, Oxford 1997 Zbl 1117.53017, MR 1261641
.

Files

Files Size Format View
Kybernetika_43-2007-6_10.pdf 1.969Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo