Previous |  Up |  Next

Article

Title: $H_2$-optimal rejection with preview: geometric constraints and dynamic feedforward solutions via spectral factorization (English)
Author: Zattoni, Elena
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 1
Year: 2008
Pages: 3-16
Summary lang: English
.
Category: math
.
Summary: In this work, a feedforward dynamic controller is devised in order to achieve H2-optimal rejection of signals known with finite preview, in discrete-time systems. The feedforward approach requires plant stability and, more generally, robustness with respect to parameter uncertainties. On standard assumptions, those properties can be guaranteed by output dynamic feedback, while dynamic feedforward is specifically aimed at taking advantage of the available preview of the signals to be rejected, in compliance with a two- degree-of-freedom control structure. The geometric constraints which prevent achievement of perfect rejection are first discussed. Then, the procedure for the design of the feedforward dynamic compensator is presented. Since the approach proposed in this work is based on spectral factorization via Riccati equation of a real rational matrix function directly related to the original to-be-controlled system, the delays introduced to model the preview of the signals to be rejected do not affect the computational burden intrinsic in the solution of the appropriate algebraic Riccati equation. A numerical example helps to illustrate the geometric constraints and the procedure for the design of the feedforward dynamic unit. (English)
Keyword: optimal design
Keyword: geometric approach
Keyword: linear systems
Keyword: discrete- time systems
MSC: 62K05
MSC: 93B27
MSC: 93C05
MSC: 93C55
idZBL: Zbl 1145.93334
idMR: MR2405051
.
Date available: 2009-09-24T20:31:30Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135829
.
Reference: [1] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory.Prentice Hall, Englewood Cliffs, NJ 1992 Zbl 0758.93002, MR 1149379
Reference: [2] Bittanti S., Laub A. J., (eds.) J. C. Willems: The Riccati Equation.Springer-Verlag, Berlin – Heidelberg 1991 Zbl 0734.34004, MR 1132048
Reference: [3] Chen J., Ren Z., Hara, S., Qiu L.: Optimal tracking performance: Preview control and exponential signals.IEEE Trans. Automat. Control 46 (2001), 10, 1647–1653 Zbl 1045.93503, MR 1858072
Reference: [4] Clements D. J.: Rational spectral factorization using state-space methods.Systems Control Lett. 20 (1993), 335–343 Zbl 0772.93002, MR 1222397
Reference: [5] Colaneri P., Geromel J. C., Locatelli A.: Control Theory and Design: An $RH_2$ and $RH_\infty $ Viewpoint.Academic Press, London 1997
Reference: [6] Grimble M. J.: Polynomial matrix solution to the standard $H_2$-optimal control problem.Internat. J. Systems Sci. 22 (1991), 5, 793–806 MR 1102097
Reference: [7] Hoover D. N., Longchamp, R., Rosenthal J.: Two-degree-of-freedom $\ell _2$-optimal tracking with preview.Automatica 40 (2004), 1, 155–162 Zbl 1035.93026, MR 2143984
Reference: [8] Hunt K. J., Šebek, M., Kučera V.: Polynomial solution of the standard multivariable $H_2$-optimal control problem.IEEE Trans. Automat. Control 39 (1994), 7, 1502–1507 MR 1283931
Reference: [9] Imai H., Shinozuka M., Yamaki T., Li, D., Kuwana M.: Disturbance decoupling by feedforward and preview control.ASME J. Dynamic Systems, Measurements and Control 105 (1983), 3, 11–17 Zbl 0512.93029
Reference: [10] Kojima A., Ishijima S.: LQ preview synthesis: Optimal control and worst case analysis.IEEE Trans. Automat. Control 44 (1999), 2, 352–357 Zbl 1056.93643, MR 1668996
Reference: [11] Lancaster P., Rodman L.: Algebraic Riccati Equations.Oxford University Press, New York 1995 Zbl 0836.15005, MR 1367089
Reference: [12] Marro G., Prattichizzo, D., Zattoni E.: A unified setting for decoupling with preview and fixed-lag smoothing in the geometric context.IEEE Trans. Automat. Control 51 (2006), 5, 809–813 MR 2232604
Reference: [13] Marro G., Zattoni E.: ${H}_2$-optimal rejection with preview in the continuous-time domain.Automatica 41 (2005), 5, 815–821 Zbl 1093.93008, MR 2157712
Reference: [14] Marro G., Zattoni E.: Signal decoupling with preview in the geometric context: exact solution for nonminimum-phase systems.J. Optim. Theory Appl. 129 (2006), 1, 165–183 Zbl 1136.93013, MR 2281050
Reference: [15] Moelja A. A., Meinsma G.: $H_2$ control of preview systems.Automatica 42 (2006), 6, 945–952 Zbl 1117.93327, MR 2227597
Reference: [16] Vidyasagar M.: Control System Synthesis: A Factorization Approach.The MIT Press, Cambridge, MA 1985 Zbl 0655.93001, MR 0787045
Reference: [17] Šebek M., Kwakernaak H., Henrion, D., Pejchová S.: Recent progress in polynomial methods and polynomial toolbox for Matlab version 2.0. In: Proc. 37th IEEE Conference on Decision and Control, Tampa 1998
Reference: [18] Willems J. C.: Feedforward control, PID control laws, and almost invariant subspaces.Systems Control Lett. 1 (1982), 4, 277–282 Zbl 0473.93032, MR 0670212
Reference: [19] Wonham W. M.: Linear Multivariable Control: A Geometric Approach.Third edition. Springer-Verlag, New York 1985 Zbl 0609.93001, MR 0770574
Reference: [20] Yamada M., Funahashi, Y., Riadh Z.: Generalized optimal zero phase tracking controller design.Trans. ASME – J. Dynamic Systems, Measurement and Control 121 (1999), 2, 165–170
Reference: [21] Zattoni E.: Decoupling of measurable signals via self-bounded controlled invariant subspaces: Minimal unassignable dynamics of feedforward units for prestabilized systems.IEEE Trans. Automat. Control 52 (2007), 1, 140–143 MR 2286774
.

Files

Files Size Format View
Kybernetika_44-2008-1_1.pdf 1.007Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo